本文整理匯總了Python中graph_tool.Graph.new_vertex_property方法的典型用法代碼示例。如果您正苦於以下問題:Python Graph.new_vertex_property方法的具體用法?Python Graph.new_vertex_property怎麽用?Python Graph.new_vertex_property使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類graph_tool.Graph
的用法示例。
在下文中一共展示了Graph.new_vertex_property方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: compose_graph
# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_vertex_property [as 別名]
def compose_graph(uid_pid_pairs):
# set up graph
g = Graph()
g.vp['pid'] = v_pid_p = g.new_vertex_property('string')
g.vp['count'] = v_count_p = g.new_vertex_property('int')
g.ep['count'] = e_count_p = g.new_edge_property('int')
pid_v_map = {}
uid_last_v_map = {}
vv_e_map = {}
for uid, pid in uid_pid_pairs:
# vertex
v = pid_v_map.get(pid)
if v is None:
v = g.add_vertex()
v_pid_p[v] = pid
v_count_p[v] = 0
pid_v_map[pid] = v
v_count_p[v] += 1
# edge
last_v = uid_last_v_map.get(uid)
uid_last_v_map[uid] = v
if last_v is None:
continue
vv = (last_v, v)
e = vv_e_map.get(vv)
if e is None:
e = g.add_edge(*vv)
e_count_p[e] = 0
vv_e_map[vv] = e
e_count_p[e] += 1
# calculate closeness
g.vp['closeness'] = v_closeness_p = g.new_vertex_property('float')
e_inverse_count_p = g.new_edge_property('int')
e_inverse_count_p.a = e_count_p.a.max()-e_count_p.a
debug('e_inverse_count_p.a: {}', e_inverse_count_p.a)
closeness(g, weight=e_inverse_count_p, vprop=v_closeness_p)
debug('v_closeness_p.a : {}', v_closeness_p.a)
v_closeness_p.a = nan_to_num(v_closeness_p.a)
debug('v_closeness_p.a : {}', v_closeness_p.a)
# fillter
g.vp['picked'] = v_picked_p = g.new_vertex_property('bool')
debug('v_count_p.a.mean() : {}', v_count_p.a.mean())
v_picked_p.a = v_count_p.a > v_count_p.a.mean()
debug('v_picked_p.a : {}', v_picked_p.a)
g.set_vertex_filter(v_picked_p)
g.set_vertex_filter(None)
return g
示例2: RoadMap
# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_vertex_property [as 別名]
class RoadMap(object):
def __init__(self, mapfile):
self._mapfile = mapfile
self.DIRECTION_index = 6
self.PATHCLASS_index = 20
self.g = Graph()
self.g.edge_properties["length"] = self.g.new_edge_property("double")
self.g.edge_properties["level"] = self.g.new_edge_property("int")
self.g.vertex_properties["pos"] = self.g.new_vertex_property("vector<double>")
self.cross_pos_index = {}
def load(self):
if self._mapfile[-3:] != 'shp':
self.g = load_graph(self._mapfile)
return
try:
sf = shapefile.Reader(self._mapfile)
except Exception as e:
print(str(e))
return False
roads_records = sf.shapeRecords() # 獲取路段信息'
for road_record in roads_records:
cross_s_index = self.add_cross(road_record.shape.points[0])
cross_e_index = self.add_cross(road_record.shape.points[-1])
self.add_road_edge(cross_s_index, cross_e_index, road_record)
if int(road_record.record[self.DIRECTION_index]) == 0: # 若路段是雙向車道
self.add_road_edge(cross_e_index, cross_s_index, road_record)
return True
def has_edge(self, s_vertex, e_vertex):
if self.g.num_vertices() >= max(s_vertex, e_vertex):
return self.g.edge(s_vertex, e_vertex)
else:
return None
def add_cross(self, cross_pos):
if cross_pos in self.cross_pos_index:
return self.cross_pos_index.get(cross_pos)
else:
cross_index = self.g.add_vertex()
self.g.vp.pos[cross_index] = cross_pos
self.cross_pos_index[cross_pos] = cross_index
return cross_index
def add_road_edge(self, s_vertex, e_vertex, road):
if self.has_edge(s_vertex, e_vertex):
return self.g.edge(s_vertex, e_vertex)
else:
edge = self.g.add_edge(s_vertex, e_vertex)
self.g.ep.level[edge] = int(road.record[self.PATHCLASS_index])
self.g.ep.length[edge] = self.road_length(road)
return edge
@staticmethod
def road_length(road):
length = 0
for sub_road in zip(road.shape.points[:-1], road.shape.points[1:]):
length += distance.euclidean(sub_road[0], sub_road[1])
return length
示例3: steiner_tree_greedy
# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_vertex_property [as 別名]
def steiner_tree_greedy(
g, root, infection_times, source, obs_nodes,
debug=False,
verbose=True):
# root = min(obs_nodes, key=infection_times.__getitem__)
sorted_obs = list(sorted(obs_nodes, key=infection_times.__getitem__))[1:]
tree_nodes = {root}
tree_edges = set()
for u in sorted_obs:
# connect u to the tree
vis = init_visitor(g, u)
if debug:
print('connect {} to tree'.format(u))
print('nodes connectable: {}'.format(tree_nodes))
forbidden_nodes = list(set(obs_nodes) - tree_nodes)
cpbfs_search(g, u, visitor=vis,
terminals=list(tree_nodes),
forbidden_nodes=forbidden_nodes,
count_threshold=1)
# add edge
reachable_nodes = set(np.nonzero(vis.dist > 0)[0]).intersection(tree_nodes)
if debug:
print('reachable_nodes: {}'.format(reachable_nodes))
assert len(reachable_nodes) > 0
sorted_ancestors = sorted(reachable_nodes, key=vis.dist.__getitem__)
ancestor = sorted_ancestors[0]
if debug:
print('ancestor: {}'.format(ancestor))
print('dist to reachable: {}'.format(vis.dist[sorted_ancestors]))
new_edges = extract_edges_from_pred(g, u, ancestor, vis.pred)
new_edges = {(v, u) for u, v in new_edges} # needs to reverse the order
if debug:
print('new_edges: {}'.format(new_edges))
tree_edges |= set(new_edges)
tree_nodes |= {v for e in new_edges for v in e}
t = Graph(directed=True)
for _ in range(g.num_vertices()):
t.add_vertex()
vfilt = t.new_vertex_property('bool')
vfilt.a = False
for v in tree_nodes:
vfilt[t.vertex(v)] = True
for u, v in tree_edges:
t.add_edge(t.vertex(u), t.vertex(v))
t.set_vertex_filter(vfilt)
return t
示例4: graph_from_dataframes
# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_vertex_property [as 別名]
def graph_from_dataframes(vertex_df, edge_df):
'''Re-creates a Graph object with PropertyMaps taken
from the vertex_df and edge_df DataFrames
Paramters:
==========
verex_df: a DataFrame with an index named 'vertex_index'
edge_df: a DataFrame with a multi-index named ('source', 'target')
Returns:
========
graph: a grah-tool Graph with PropertyMaps copied
from the columns of the input DataFrames
'''
graph = Graph(directed=True)
vertex_index = vertex_df.index.get_level_values(level='vertex_index')
vertices = graph.add_vertex(n=vertex_index.shape[0])
for col in vertex_df.columns:
in_type = vertex_df[col].dtype.name
try:
dtype = ALIASES[in_type]
except KeyError:
log.info('Data type {} not supported'.format(in_type))
continue
prop = graph.new_vertex_property(dtype)
prop.fa = vertex_df[col]
graph.vertex_properties[col] = prop
src = edge_df.index.names.index('source')
trgt = edge_df.index.names.index('target')
### TODO: use the list edge creation
for tup in edge_df.index:
source, target = tup[src], tup[trgt]
try:
edge = graph.add_edge(source, target)
except ValueError:
log.info('Invalid vertex in (source: {}, target: {})'.format(source, target))
for col in edge_df.columns:
in_type = edge_df[col].dtype.name
try:
dtype = ALIASES[in_type]
except KeyError:
log.info('Data type {} not supported'.format(in_type))
continue
prop = graph.new_edge_property(dtype)
prop.fa = edge_df[col]
graph.edge_properties[col] = prop
return graph
示例5: create_graph
# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_vertex_property [as 別名]
def create_graph(cls, edges, is_directed=True):
"""Create a graph-tool type graph from a list of edges"""
g = Graph()
g.set_directed(is_directed)
label2index = dict()
label = g.new_vertex_property('int32_t')
g.vertex_properties['label'] = label
for v1_label, v2_label in edges:
cls.add_vertex(v1_label, label2index, g)
cls.add_vertex(v2_label, label2index, g)
v1, v2 = label2index[v1_label], label2index[v2_label]
g.add_edge(v1, v2)
return g, label2index
示例6: graph_from_dataframes
# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_vertex_property [as 別名]
def graph_from_dataframes(vertex_df, edge_df):
'''Re-creates a Graph object with PropertyMaps taken
from the vertex_df and edge_df DataFrames
Paramters:
==========
verex_df: a DataFrame with an index named 'vertex_index'
edge_df: a DataFrame with a multi-index named ('source', 'target')
Returns:
========
graph: a grah-tool Graph with PropertyMaps copied
from the columns of the input DataFrames
'''
graph = Graph(directed=True)
vertex_index = vertex_df.index.get_level_values(level='vertex_index')
vertices = graph.add_vertex(n=vertex_index.shape[0])
for col in vertex_df.columns:
dtype = ALIASES[vertex_df[col].dtype.name]
prop = graph.new_vertex_property(dtype)
prop.a = vertex_df[col]
graph.vertex_properties[col] = prop
src = edge_df.index.names.index('source')
trgt = edge_df.index.names.index('target')
### TODO: use the list edge creation
for tup in edge_df.index:
source, target = tup[src], tup[trgt]
edge = graph.add_edge(source, target)
for col in edge_df.columns:
dtype = ALIASES[edge_df[col].dtype.name]
prop = graph.new_edge_property(dtype)
prop.a = edge_df[col]
graph.edge_properties[col] = prop
return graph
示例7: parse_graph_from_string
# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_vertex_property [as 別名]
def parse_graph_from_string(self, graphML_string):
dom = minidom.parseString(graphML_string)
root = dom.getElementsByTagName("graphml")[0]
graph = root.getElementsByTagName("graph")[0]
name = graph.getAttribute('id')
g = Graph(directed=False)
vpos=g.new_vertex_property("vector<double>")
for node in graph.getElementsByTagName("node"):
id=node.getAttribute('id')
n = g.add_vertex()
g.vertex_index[id]
#right now only the positions are available
for attr in node.getElementsByTagName("data"):
if attr.firstChild:
key=attr.getAttribute("key")
#n[key] = attr.firstChild.data
if(key=="x"):
x=attr.firstChild.data
elif(key=="y"):
y=attr.firstChild.data
vpos[id]=(x,y)
g.vertex_properties["pos"]=vpos
#have to workaround the directed graph written by the server
for edge in graph.getElementsByTagName("edge"):
source = edge.getAttribute('source')
dest = edge.getAttribute('target')
edge=g.edge(dest,source)
if(edge==None):
e = g.add_edge(source, dest)
return g
示例8: build_closure
# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_vertex_property [as 別名]
def build_closure(g, terminals,
debug=False,
verbose=False):
terminals = list(terminals)
# build closure
gc = Graph(directed=False)
for _ in range(g.num_vertices()):
gc.add_vertex()
edges_with_weight = set()
r2pred = {}
for r in terminals:
if debug:
print('root {}'.format(r))
vis = init_visitor(g, r)
pbfs_search(g, source=r, terminals=terminals, visitor=vis)
new_edges = set(get_edges(vis.dist, r, terminals))
if debug:
print('new edges {}'.format(new_edges))
edges_with_weight |= new_edges
r2pred[r] = vis.pred
for u, v, c in edges_with_weight:
gc.add_edge(u, v)
eweight = gc.new_edge_property('int')
weights = np.array([c for _, _, c in edges_with_weight])
eweight.set_2d_array(weights)
vfilt = gc.new_vertex_property('bool')
vfilt.a = False
for v in terminals:
vfilt[v] = True
gc.set_vertex_filter(vfilt)
return gc, eweight, r2pred
示例9: main
# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_vertex_property [as 別名]
def main():
conn = serial_interface.connect()
cur_track = track.init_tracka()
g = Graph()
g.add_vertex(len(cur_track))
for (vi, node) in enumerate(cur_track): node.i = vi
n_title = g.new_vertex_property("string")
n_color = g.new_vertex_property("string")
n_pos = g.new_vertex_property("vector<double>")
e_title = g.new_edge_property("string")
e_dist = g.new_edge_property("double")
for node in cur_track:
v = g.vertex(node.i)
n_title[v] = node.name
if node.typ == track.NODE_EXIT:
# Invert points to match our ASCII display.
n_pos[v] = (-node.reverse.coord_x, -node.reverse.coord_y)
else:
n_pos[v] = (-node.coord_x, -node.coord_y)
e = g.add_edge(g.vertex(node.i), g.vertex(node.reverse.i))
if node.typ == track.NODE_SENSOR: n_color[v] = "blue"
elif node.typ == track.NODE_BRANCH: n_color[v] = "orange"
elif node.typ == track.NODE_MERGE: n_color[v] = "yellow"
elif node.typ == track.NODE_ENTER: n_color[v] = "green"
elif node.typ == track.NODE_EXIT: n_color[v] = "red"
else: n_color[v] = "white"
for edge in node.edge:
if edge.src is None: continue
e = g.add_edge(g.vertex(edge.src.i), g.vertex(edge.dest.i))
e_dist[e] = edge.dist
e_title[e] = "%.2f" % (edge.dist)
win = graph_tool.draw.GraphWindow(g, n_pos, (640, 480), edge_text=e_title, vertex_fill_color=n_color, vertex_text=n_title)
win.show_all()
def destroy_callback(*args, **kwargs):
win.destroy()
Gtk.main_quit()
def set_switch(sw, d):
for node in cur_track:
if node.typ == track.NODE_BRANCH and node.num == sw:
node.switch_direction = d
return
print "WARN: Could not find switch %d" % sw
class Train():
num = -1
vel = 0.
speed = 0.
edge = cur_track[0].edge[0]
edge_dist = 0
SPEEDX = 1.
def __init__(self, num):
self.num = num
def update(self):
# Super shitty deacceleration model
self.vel = self.vel + (0.018/self.SPEEDX)*(self.speed - self.vel)
self.edge_dist += self.vel
while True:
e = self.e()
if self.edge_dist < e_dist[e]: break
if self.edge.dest.typ == track.NODE_SENSOR:
conn.set_sensor_tripped(self.edge.dest.num)
self.edge = self.edge.dest.edge[self.edge.dest.switch_direction]
self.edge_dist -= e_dist[e]
def draw(self, n_pos, da, cr):
e = self.e()
start, end = np.array(n_pos[e.source()]), np.array(n_pos[e.target()])
alpha = self.edge_dist / e_dist[e]
pos = start + alpha*(end - start)
dp = win.graph.pos_to_device(pos) # dp: device position
cr.rectangle(dp[0]-10, dp[1]-10, 20, 20)
cr.set_source_rgb(102. / 256, 102. / 256, 102. / 256)
cr.fill()
cr.move_to(dp[0]-10, dp[1] + 10 - 12./2)
cr.set_source_rgb(1., 1., 1.)
cr.set_font_size(12)
cr.show_text("%d" % self.num)
cr.fill()
def e(self): return g.edge(self.edge.src.i, self.edge.dest.i)
def set_speed(self, speed): self.speed = speed/self.SPEEDX
def toggle_reverse(self):
self.edge = self.edge.reverse
self.edge_dist = e_dist[self.e()] - self.edge_dist
def find_train(train_number):
for train in trains:
if train.num == train_number:
return train
train = Train(train_number)
trains.append(train)
return train
trains = [Train(12)]
#.........這裏部分代碼省略.........
示例10: makeGraph
# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_vertex_property [as 別名]
def makeGraph(self,img,dia,xScale,yScale):
print 'Building Graph Data Structure'
start=time.time()
G = Graph(directed=False)
vprop=G.new_vertex_property('object')
eprop=G.new_edge_property('object')
epropW=G.new_edge_property("int32_t")
avgScale=(xScale+yScale)/2
test=np.where(img==True)
ss = np.shape(test)
cccc=0
percentOld=0.0
print str(np.round(percentOld,1))+'%'
for (i,j) in zip(test[1],test[0]):
cccc+=1
percent=(float(cccc)/float(ss[1]))*100
if percentOld+10< percent:
print str(np.round(percent,1))+'%'
percentOld=percent
nodeNumber1 = (float(i)*yScale,float(j)*xScale)
if gu.find_vertex(G, vprop, {'imgIdx':(j,i),'coord':nodeNumber1, 'nrOfPaths':0, 'diameter':float(dia[j][i])*avgScale}):
v1=gu.find_vertex(G, vprop, {'imgIdx':(j,i),'coord':nodeNumber1, 'nrOfPaths':0, 'diameter':float(dia[j][i])*avgScale})[0]
else:
v1=G.add_vertex()
vprop[G.vertex(v1)]={'imgIdx':(j,i),'coord':nodeNumber1, 'nrOfPaths':0, 'diameter':float(dia[j][i])*avgScale}
try:
if img[j,i+1] == True:
nodeNumber2 = (float(i+1)*yScale,float(j)*xScale)
if gu.find_vertex(G, vprop, {'imgIdx':(j,i+1),'coord':nodeNumber2, 'nrOfPaths':0, 'diameter':float(dia[j][i+1])*avgScale}):
v2=gu.find_vertex(G, vprop, {'imgIdx':(j,i+1),'coord':nodeNumber2, 'nrOfPaths':0, 'diameter':float(dia[j][i+1])*avgScale})[0]
if gu.find_edge(G, eprop, {'coord1':vprop[v2]['coord'], 'coord2':vprop[v1]['coord'],'weight':((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)**4,'RTP':False}):
pass
else:
e = G.add_edge(v1, v2)
epropW[e]=(((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)/avgScale)**4
eprop[e]={'coord1':vprop[v1]['coord'], 'coord2':vprop[v2]['coord'],'weight':((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)**4,'RTP':False}
else:
v2=G.add_vertex()
vprop[G.vertex(v2)]={'imgIdx':(j,i+1),'coord':nodeNumber2, 'nrOfPaths':0, 'diameter':float(dia[j][i+1])*avgScale}
e = G.add_edge(v1, v2)
epropW[e]=(((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)/avgScale)**4
eprop[e]={'coord1':vprop[v1]['coord'], 'coord2':vprop[v2]['coord'],'weight':((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)**4,'RTP':False}
except:
pass
try:
if img[j,i-1] == True:
nodeNumber2 = (float(i-1)*yScale,float(j)*xScale)
if gu.find_vertex(G, vprop, {'imgIdx':(j,i-1),'coord':nodeNumber2, 'nrOfPaths':0, 'diameter':float(dia[j][i-1])*avgScale}):
v2=gu.find_vertex(G, vprop, {'imgIdx':(j,i-1),'coord':nodeNumber2, 'nrOfPaths':0, 'diameter':float(dia[j][i-1])*avgScale})[0]
if gu.find_edge(G, eprop, {'coord1':vprop[v2]['coord'], 'coord2':vprop[v1]['coord'],'weight':((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)**4,'RTP':False}):
pass
else:
e = G.add_edge(v1, v2)
epropW[e]=(((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)/avgScale)**4
eprop[e]={'coord1':vprop[v1]['coord'], 'coord2':vprop[v2]['coord'],'weight':((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)**4,'RTP':False}
else:
v2=G.add_vertex()
vprop[G.vertex(v2)]={'imgIdx':(j,i-1),'coord':nodeNumber2, 'nrOfPaths':0, 'diameter':float(dia[j][i-1])*avgScale}
e = G.add_edge(v1, v2)
epropW[e]=(((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)/avgScale)**4
eprop[e]={'coord1':vprop[v1]['coord'], 'coord2':vprop[v2]['coord'],'weight':((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)**4,'RTP':False}
except:pass
try:
if img[j + 1,i] == True:
nodeNumber2 = (float(i)*yScale,float(j+1)*xScale)
if gu.find_vertex(G, vprop, {'imgIdx':(j+1,i),'coord':nodeNumber2, 'nrOfPaths':0, 'diameter':float(dia[j+1][i])*avgScale}):
v2=gu.find_vertex(G, vprop, {'imgIdx':(j+1,i),'coord':nodeNumber2, 'nrOfPaths':0, 'diameter':float(dia[j+1][i])*avgScale})[0]
if gu.find_edge(G, eprop, {'coord1':vprop[v2]['coord'], 'coord2':vprop[v1]['coord'],'weight':((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)**4,'RTP':False}):
pass
else:
e = G.add_edge(v1, v2)
epropW[e]=(((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)/avgScale)**4
eprop[e]={'coord1':vprop[v1]['coord'], 'coord2':vprop[v2]['coord'],'weight':((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)**4,'RTP':False}
else:
v2=G.add_vertex()
vprop[G.vertex(v2)]={'imgIdx':(j+1,i),'coord':nodeNumber2, 'nrOfPaths':0, 'diameter':float(dia[j+1][i])*avgScale}
e = G.add_edge(v1, v2)
epropW[e]=(((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)/avgScale)**4
eprop[e]={'coord1':vprop[v1]['coord'], 'coord2':vprop[v2]['coord'],'weight':((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)**4,'RTP':False}
except:pass
try:
if img[j - 1,i] == True:
nodeNumber2 = (float(i)*yScale,float(j-1)*xScale)
if gu.find_vertex(G, vprop, {'imgIdx':(j-1,i),'coord':nodeNumber2, 'nrOfPaths':0, 'diameter':float(dia[j-1][i])*avgScale}):
v2=gu.find_vertex(G, vprop, {'imgIdx':(j-1,i),'coord':nodeNumber2, 'nrOfPaths':0, 'diameter':float(dia[j-1][i])*avgScale})[0]
if gu.find_edge(G, eprop, {'coord1':vprop[v2]['coord'], 'coord2':vprop[v1]['coord'],'weight':((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)**4,'RTP':False}):
pass
else:
e = G.add_edge(v1, v2)
epropW[e]=(((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)/avgScale)**4
eprop[e]={'coord1':vprop[v1]['coord'], 'coord2':vprop[v2]['coord'],'weight':((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)**4,'RTP':False}
else:
v2=G.add_vertex()
vprop[G.vertex(v2)]={'imgIdx':(j-1,i),'coord':nodeNumber2, 'nrOfPaths':0, 'diameter':float(dia[j-1][i])*avgScale}
e = G.add_edge(v1, v2)
epropW[e]=(((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)/avgScale)**4
eprop[e]={'coord1':vprop[v1]['coord'], 'coord2':vprop[v2]['coord'],'weight':((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)**4,'RTP':False}
except: pass
#.........這裏部分代碼省略.........
示例11: makeGraphFast
# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_vertex_property [as 別名]
def makeGraphFast(self,img,dia,xScale,yScale):
print('Building Graph Data Structure'),
start=time.time()
G = Graph(directed=False)
sumAddVertices=0
vprop=G.new_vertex_property('object')
eprop=G.new_edge_property('object')
epropW=G.new_edge_property("float")
h, w = np.shape(img)
if xScale>0 and yScale>0: avgScale=(xScale+yScale)/2
else:
avgScale=1.
xScale=1.
yScale=1.
addedVerticesLine2=[]
vListLine2=[]
percentOld=0
counter=0
'''
Sweep over each line in the image except the last line
'''
for idx,i in enumerate(img[:len(img)-2]):
'''
Get foreground indices in the current line of the image and make vertices
'''
counter+=1
percent=(float(counter)/float(h))*100
if percentOld+10< percent:
print (str(np.round(percent,1))+'% '),
percentOld=percent
line1=np.where(i==True)
if len(line1[0])>0:
line1=set(line1[0]).difference(set(addedVerticesLine2))
vL=G.add_vertex(len(list(line1)))
if len(line1)>1 :
vList=vListLine2+list(vL)
else: vList=vListLine2+[vL]
line1=addedVerticesLine2+list(line1)
for jdx,j in enumerate(line1):
vprop[vList[jdx]]={'imgIdx':(j,idx),'coord': (float(j)*xScale,float(idx)*yScale), 'nrOfPaths':0, 'diameter':float(dia[idx][j])*avgScale}
'''
keep order of the inserted vertices
'''
sumAddVertices+=len(line1)
addedVerticesLine2=[]
vListLine2=[]
'''
Connect foreground indices to neighbours in the next line
'''
for v1 in line1:
va=vList[line1.index(v1)]
diagonalLeft = diagonalRight = True
try:
if img[idx][v1-1]==True:
diagonalLeft=False
vb=vList[line1.index(v1-1)]
e=G.add_edge(va,vb)
eprop[e]={'coord1':vprop[va]['coord'], 'coord2':vprop[vb]['coord'],'weight':((vprop[va]['diameter']+vprop[vb]['diameter'])/2),'RTP':False}
epropW[e]=2./(eprop[e]['weight']**2)
except:
print 'Boundary vertex at: '+str([v1,idx-1])+' image size: '+ str([w,h])
pass
try:
if img[idx][v1+1]==True:
diagonalRight=False
vb=vList[line1.index(v1+1)]
e=G.add_edge(va,vb)
eprop[e]={'coord1':vprop[va]['coord'], 'coord2':vprop[vb]['coord'],'weight':((vprop[va]['diameter']+vprop[vb]['diameter'])/2),'RTP':False}
epropW[e]=2./(eprop[e]['weight']**2)
except:
print 'Boundary vertex at: '+str([v1+1,idx])+' image size: '+ str([w,h])
pass # just if we are out of bounds
try:
if img[idx+1][v1]==True:
diagonalRight=False
diagonalLeft=False
vNew=G.add_vertex()
vprop[vNew]={'imgIdx':(v1,idx+1),'coord': (float(v1)*xScale,float(idx+1)*yScale), 'nrOfPaths':0, 'diameter':float(dia[idx+1][v1])*avgScale}
vListLine2.append(vNew)
e=G.add_edge(vList[line1.index(v1)],vNew)
eprop[e]={'coord1':vprop[va]['coord'], 'coord2':vprop[vNew]['coord'],'weight':((vprop[va]['diameter']+vprop[vNew]['diameter'])/2),'RTP':False}
epropW[e]=1./(eprop[e]['weight']**2)
if v1 not in addedVerticesLine2: addedVerticesLine2.append(v1)
except:
print 'Boundary vertex at: '+str([v1,idx+1])+' image size: '+ str([w,h])
pass
try:
if diagonalRight == True and img[idx+1][v1+1]==True:
vNew=G.add_vertex()
vprop[vNew]={'imgIdx':(v1+1,idx+1),'coord': (float(v1+1)*xScale,float(idx+1)*yScale), 'nrOfPaths':0, 'diameter':float(dia[idx+1][v1+1])*avgScale}
vListLine2.append(vNew)
e=G.add_edge(vList[line1.index(v1)],vNew)
#.........這裏部分代碼省略.........
示例12: while
# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_vertex_property [as 別名]
request.append(temp_source)
while(1):
temp_target = randint(0, 13)
if(not(temp_target == temp_source)):
request.append(temp_target)
break
if not(request in all_requests):
all_requests.append(request)
#print("Number of requests are " + str(len(all_requests)))
## Defining the graph properties ##
graph_weight = g.new_edge_property("float")
g.ep.weight = graph_weight
graph_pred_tree = g.new_vertex_property("int")
pred_tree = graph_pred_tree
edges_logger = {}
for e in g.edges():
flags_of_edges = []
# Temporary flag to ensure that alternative path is not on the primary path itself
flags_of_edges.append(1)
# Flags to see which channels are currently in use
for i in range(number_frequency_bands):
flags_of_edges.append(1)
# Flags to keep record of the extent of the usage of a particular channel in a link
for i in range(number_frequency_bands):
flags_of_edges.append(0)
# Flags to fulfil the single point failure protection between those who share their primary paths
示例13: SkeletonMatch
# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_vertex_property [as 別名]
class SkeletonMatch(object):
"""
implement Oscar's skeleton matching alogrithm in this class
"""
def __init__(self, skel1, skel2, centricity=.5, length=.5, distorted=20.):
if skel1 is not None and skel2 is not None :
self.skel1 = skel1
self.skel2 = skel2
self.centricity_threhold = centricity
self.length_threhold = length
self.distorted_threhold = distorted
self.skel1.calc_skel_properties()
self.skel2.calc_skel_properties()
# use index instead of real value
skel1_index = np.arange(len(self.skel1.feature_node_index))
skel2_index = np.arange(len(self.skel2.feature_node_index))
junc1_num = len(skel1.junction_index)
junc2_num = len(skel2.junction_index)
#print 'skel1 normalized_verts\n', skel1.normalized_feature_verts
#print 'skel2 normalized_verts\n', skel2.normalized_feature_verts
#candidate matched pairs
junction_pairs = []
junc_term_pairs = []
terminal_pairs = []
for i, j in itertools.product(skel1_index, skel2_index):
if self.test_node_centricity(c1=i, c2=j):
if i < junc1_num and j < junc2_num: # only junction nodes
junction_pairs.append([i,j])
elif i >= junc1_num and j >= junc2_num: # only terminal nodes
terminal_pairs.append([i,j])
else:
junc_term_pairs.append([i,j])
self.junction_pairs = np.array(junction_pairs)
self.terminal_pairs = np.array(terminal_pairs)
self.junc_term_pairs = np.array(junc_term_pairs)
#self.all_junc_pairs = np.vstack((self.junction_pairs, self.junc_term_pairs))
self.vote_tree = Graph(directed=False)
self.node_pair = self.vote_tree.new_vertex_property("vector<short>")
self._construct_voting_tree()
else:
print 'need input two skeleton to match'
def _construct_voting_tree(self, prev_pairs=np.array([]), mix_junc_term=True):
"""
recursively consturct voting tree
@param prev_pairs record that already on the path
@param junc_pairs record that left part junction pairs (on current tree level)
@param term_pairs record that left terminal pairs on current tree level
now limits: at least one junction pair
"""
# root of the tree
if len(prev_pairs) == 0:
v1 = self.vote_tree.add_vertex()
#first level, only junction pairs (both are junction)
for n, pair in enumerate(self.junction_pairs):
new_prev = pair.reshape(-1,2) # to use len(for level one), need to change shape
print 'adding subtree', n+1, '/', len(self.junction_pairs)
v2 = self._construct_voting_tree(prev_pairs=new_prev)
self.vote_tree.add_edge(v1, v2)
return v1 # return the root
elif len(prev_pairs) == 1: # first level
v1 = self.vote_tree.add_vertex()
self.node_pair[v1] = prev_pairs.flatten()
"""
priority order: junction pairs, terminal pairs, junc-term pairs
"""
check_junc = True
#prepare for next(second) level
for n, pair in enumerate(self.junction_pairs):
if pair[0] not in prev_pairs[:,0] and pair[1] not in prev_pairs[:,1]:
new_prev = np.vstack((prev_pairs, pair))
v2 = self._construct_voting_tree(prev_pairs=new_prev)
if v2 is not None:
check_junc = False
self.vote_tree.add_edge(v1, v2)
# it is sure that that should be some terminal_pairs
# but in case
check_term = mix_junc_term # if True allow mix junc and term
if check_junc:
for n, pair in enumerate(self.terminal_pairs):
new_prev = np.vstack((prev_pairs, pair))
v2 = self._construct_voting_tree(prev_pairs=new_prev, mix_junc_term=True)
if v2 is not None:
check_term = False
self.vote_tree.add_edge(v1, v2)
if check_junc and check_term:
for n, pair in enumerate(self.junc_term_pairs):
new_prev = np.vstack((prev_pairs, pair))
v2 = self._construct_voting_tree(prev_pairs=new_prev)
#.........這裏部分代碼省略.........
示例14: BoardGraphGraphtool
# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_vertex_property [as 別名]
class BoardGraphGraphtool(BoardGraphBase):
def __init__(self, number_of_vertices, graph_type):
super().__init__(number_of_vertices, graph_type)
# Graph tool creates directed multigraph by default.
self._graph = Graph()
self._graph.add_vertex(number_of_vertices)
self._graph.vertex_properties["cell"] = self._graph.new_vertex_property(
"object", number_of_vertices * [BoardCell()]
)
self._graph.edge_properties["direction"
] = self._graph.new_edge_property("object")
self._graph.edge_properties["weight"
] = self._graph.new_edge_property("int")
def __getitem__(self, position):
return self._graph.vp.cell[self._graph.vertex(position)]
def __setitem__(self, position, board_cell):
self._graph.vp.cell[self._graph.vertex(position)] = board_cell
def __contains__(self, position):
return position in range(0, self.vertices_count())
def vertices_count(self):
return self._graph.num_vertices()
def edges_count(self):
return self._graph.num_edges()
def has_edge(self, source_vertice, target_vertice, direction):
for e in self._graph.vertex(source_vertice).out_edges():
if (
int(e.target()) == target_vertice and
self._graph.ep.direction[e] == direction
):
return True
return False
def out_edges_count(self, source_vertice, target_vertice):
return len([
1 for e in self._graph.vertex(source_vertice).out_edges()
if int(e.target()) == target_vertice
])
def reconfigure_edges(self, width, height, tessellation):
"""
Uses tessellation object to create all edges in graph.
"""
self._graph.clear_edges()
for source_vertice in self._graph.vertices():
for direction in tessellation.legal_directions:
neighbor_vertice = tessellation.neighbor_position(
int(source_vertice),
direction,
board_width=width,
board_height=height
)
if neighbor_vertice is not None:
e = self._graph.add_edge(
source_vertice, neighbor_vertice, add_missing=False
)
self._graph.ep.direction[e] = direction
# TODO: Faster version?
# def reconfigure_edges(self, width, height, tessellation):
# """
# Uses tessellation object to create all edges in graph.
# """
# self._graph.clear_edges()
# edges_to_add = []
# directions_to_add = dict()
# for source_vertice in self._graph.vertices():
# for direction in tessellation.legal_directions:
# neighbor_vertice = tessellation.neighbor_position(
# int(source_vertice), direction,
# board_width=width, board_height=height
# )
# if neighbor_vertice is not None:
# edge = (int(source_vertice), neighbor_vertice,)
# edges_to_add.append(edge)
# if edge not in directions_to_add:
# directions_to_add[edge] = deque()
# directions_to_add[edge].append(direction)
# self._graph.add_edge_list(edges_to_add) if edges_to_add else None
# for e in edges_to_add:
# e_descriptors = self._graph.edge(
# s = self._graph.vertex(e[0]),
# t = self._graph.vertex(e[1]),
# all_edges = True
# )
# for e_descriptor in e_descriptors:
# if len(directions_to_add[e]) > 0:
# self._graph.ep.direction[e_descriptor] = directions_to_add[e][0]
#.........這裏部分代碼省略.........
示例15: build_graph
# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_vertex_property [as 別名]
def build_graph(df_list, sens='ST', top=410, min_sens=0.01,
edge_cutoff=0.0):
"""
Initializes and constructs a graph where vertices are the parameters
selected from the first dataframe in 'df_list', subject to the
constraints set by 'sens', 'top', and 'min_sens'. Edges are the second
order sensitivities of the interactions between those vertices,
with sensitivities greater than 'edge_cutoff'.
Parameters
-----------
df_list : list
A list of two dataframes. The first dataframe should be
the first/total order sensitivities collected by the
function data_processing.get_sa_data().
sens : str, optional
A string with the name of the sensitivity that you would
like to use for the vertices ('ST' or 'S1').
top : int, optional
An integer specifying the number of vertices to display (
the top sensitivity values).
min_sens : float, optional
A float with the minimum sensitivity to allow in the graph.
edge_cutoff : float, optional
A float specifying the minimum second order sensitivity to
show as an edge in the graph.
Returns
--------
g : graph-tool object
a graph-tool graph object of the network described above. Each
vertex has properties 'param', 'sensitivity', and 'confidence'
corresponding to the name of the parameter, value of the sensitivity
index, and it's confidence interval. The only edge property is
'second_sens', the second order sensitivity index for the
interaction between the two vertices it connects.
"""
# get the first/total index dataframe and second order dataframe
df = df_list[0]
df2 = df_list[1]
# Make sure sens is ST or S1
if sens not in set(['ST', 'S1']):
raise ValueError('sens must be ST or S1')
# Make sure that there is a second order index dataframe
try:
if not df2:
raise Exception('Missing second order dataframe!')
except:
pass
# slice the dataframes so the resulting graph will only include the top
# 'top' values of 'sens' greater than 'min_sens'.
df = df.sort_values(sens, ascending=False)
df = df.ix[df[sens] > min_sens, :].head(top)
df = df.reset_index()
# initialize a graph
g = Graph()
vprop_sens = g.new_vertex_property('double')
vprop_conf = g.new_vertex_property('double')
vprop_name = g.new_vertex_property('string')
eprop_sens = g.new_edge_property('double')
g.vertex_properties['param'] = vprop_name
g.vertex_properties['sensitivity'] = vprop_sens
g.vertex_properties['confidence'] = vprop_conf
g.edge_properties['second_sens'] = eprop_sens
# keep a list of all the vertices
v_list = []
# Add the vertices to the graph
for i, param in enumerate(df['Parameter']):
v = g.add_vertex()
vprop_sens[v] = df.ix[i, sens]
vprop_conf[v] = 1 + df.ix[i, '%s_conf' % sens] / df.ix[i, sens]
vprop_name[v] = param
v_list.append(v)
# Make two new columns in second order dataframe that point to the vertices
# connected on each row.
df2['vertex1'] = -999
df2['vertex2'] = -999
for vertex in v_list:
param = g.vp.param[vertex]
df2.ix[df2['Parameter_1'] == param, 'vertex1'] = vertex
df2.ix[df2['Parameter_2'] == param, 'vertex2'] = vertex
# Only allow edges for vertices that we've defined
df_edges = df2[(df2['vertex1'] != -999) & (df2['vertex2'] != -999)]
# eliminate edges below a certain cutoff value
pruned = df_edges[df_edges['S2'] > edge_cutoff]
pruned.reset_index(inplace=True)
# Add the edges for the graph
for i, sensitivity in enumerate(pruned['S2']):
v1 = pruned.ix[i, 'vertex1']
v2 = pruned.ix[i, 'vertex2']
#.........這裏部分代碼省略.........