當前位置: 首頁>>代碼示例>>Python>>正文


Python Graph.remove_vertex方法代碼示例

本文整理匯總了Python中graph_tool.Graph.remove_vertex方法的典型用法代碼示例。如果您正苦於以下問題:Python Graph.remove_vertex方法的具體用法?Python Graph.remove_vertex怎麽用?Python Graph.remove_vertex使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在graph_tool.Graph的用法示例。


在下文中一共展示了Graph.remove_vertex方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _filter_short_branch

# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import remove_vertex [as 別名]
    def _filter_short_branch(self, filter=False, short=30):
        """
        filter out very short branches: do this maybe not right for some models, for models with flat part, it is right
        I will test how this effect the final matching results
        need to delete nodes, switch with the last one then delete last
        """
        if filter == False:
            self.verts = self.verts_init
            self.edges = self.edges_init
        else:
            init_graph = Graph(directed=False)
            init_graph.add_vertex(len(self.verts_init))
            for edge in self.edges_init:
                init_graph.add_edge(init_graph.vertex(edge[0]), init_graph.vertex(edge[1]))

            terminal_node = []
            for v in init_graph.vertices():
                if v.out_degree() == 1:
                    terminal_node.append(v)

            visitor = DepthVisitor()
            short_nodes = []
            for tn in terminal_node:
                search.dfs_search(init_graph, tn, visitor)
                tmp_node = visitor.get_short_branch(min_length=short)
                visitor.reset()
                for n in tmp_node:
                    short_nodes.append(n)

            ## get edges on the short paths
            short_nodes = list(set(short_nodes))
            short_edges = []
            temp_verts = self.verts_init[:]
            v_num = len(self.verts_init)
            if len(short_nodes):
                for v in reversed(sorted(short_nodes)):
                    for ve in init_graph.vertex(v).out_edges():
                        short_edges.append(ve)

                ## delete edges first, then vertex
                short_edges = list(set(short_edges))
                for e in short_edges:
                    init_graph.remove_edge(e)

                print 'deleting vertex',
                for v in reversed(sorted(short_nodes)):
                    print v,
                    temp_verts[int(v)] = temp_verts[v_num-1]
                    init_graph.remove_vertex(v, fast=True)
                    v_num -= 1
                print '\ndeleting related edges' # already done above, just info user
            else:
                print 'no short branches'

            ######## new vertices and edges ########
            self.verts = temp_verts[:v_num]
            self.edges = []
            for e in init_graph.edges():
                self.edges.append([int(e.source()), int(e.target())])
開發者ID:bo-wu,項目名稱:skel_corres,代碼行數:61,代碼來源:skeleton_data.py

示例2: gen_fs

# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import remove_vertex [as 別名]
def gen_fs(dicProperties):
	np.random.seed()
	graphFS = Graph()
	# on définit la fraction des arcs à utiliser la réciprocité
	f = dicProperties["Reciprocity"]
	rFracRecip =  f/(2.0-f)
	# on définit toutes les grandeurs de base
	rInDeg = dicProperties["InDeg"]
	rOutDeg = dicProperties["OutDeg"]
	nNodes = 0
	nEdges = 0
	rDens = 0.0
	if "Nodes" in dicProperties.keys():
		nNodes = dicProperties["Nodes"]
		graphFS.add_vertex(nNodes)
		if "Edges" in dicProperties.keys():
			nEdges = dicProperties["Edges"]
			rDens = nEdges / float(nNodes**2)
			dicProperties["Density"] = rDens
		else:
			rDens = dicProperties["Density"]
			nEdges = int(np.floor(rDens*nNodes**2))
			dicProperties["Edges"] = nEdges
	else:
		nEdges = dicProperties["Edges"]
		rDens = dicProperties["Density"]
		nNodes = int(np.floor(np.sqrt(nEdges/rDens)))
		graphFS.add_vertex(nNodes)
		dicProperties["Nodes"] = nNodes
	# on définit le nombre d'arcs à créer
	nArcs = int(np.floor(rDens*nNodes**2)/(1+rFracRecip))
	# on définit les paramètres fonctions de probabilité associées F(x) = A x^{-tau}
	Ai = nArcs*(rInDeg-1)/(nNodes)
	Ao = nArcs*(rOutDeg-1)/(nNodes)
	# on définit les moyennes des distributions de pareto 2 = lomax
	rMi = 1/(rInDeg-2.)
	rMo = 1/(rOutDeg-2.)
	# on définit les trois listes contenant les degrés sortant/entrant/bidirectionnels associés aux noeuds i in range(nNodes)
	lstInDeg = np.random.pareto(rInDeg,nNodes)+1
	lstOutDeg = np.random.pareto(rOutDeg,nNodes)+1
	lstInDeg = np.floor(np.multiply(Ai/np.mean(lstInDeg), lstInDeg)).astype(int)
	lstOutDeg = np.floor(np.multiply(Ao/np.mean(lstOutDeg), lstOutDeg)).astype(int)
	# on génère les stubs qui vont être nécessaires et on les compte
	nInStubs = int(np.sum(lstInDeg))
	nOutStubs = int(np.sum(lstOutDeg))
	lstInStubs = np.zeros(np.sum(lstInDeg))
	lstOutStubs = np.zeros(np.sum(lstOutDeg))
	nStartIn = 0
	nStartOut = 0
	for vert in range(nNodes):
		nInDegVert = lstInDeg[vert]
		nOutDegVert = lstOutDeg[vert]
		for j in range(np.max([nInDegVert,nOutDegVert])):
			if j < nInDegVert:
				lstInStubs[nStartIn+j] += vert
			if j < nOutDegVert:
				lstOutStubs[nStartOut+j] += vert
		nStartOut+=nOutDegVert
		nStartIn+=nInDegVert
	# on vérifie qu'on a à peu près le nombre voulu d'edges
	while nInStubs*(1+rFracRecip)/float(nArcs) < 0.95 :
		vert = np.random.randint(0,nNodes)
		nAddInStubs = int(np.floor(Ai/rMi*(np.random.pareto(rInDeg)+1)))
		lstInStubs = np.append(lstInStubs,np.repeat(vert,nAddInStubs)).astype(int)
		nInStubs+=nAddInStubs
	while nOutStubs*(1+rFracRecip)/float(nArcs) < 0.95 :
		nAddOutStubs = int(np.floor(Ao/rMo*(np.random.pareto(rOutDeg)+1)))
		lstOutStubs = np.append(lstOutStubs,np.repeat(vert,nAddOutStubs)).astype(int)
		nOutStubs+=nAddOutStubs
	# on s'assure d'avoir le même nombre de in et out stubs (1.13 is an experimental correction)
	nMaxStubs = int(1.13*(2.0*nArcs)/(2*(1+rFracRecip)))
	if nInStubs > nMaxStubs and nOutStubs > nMaxStubs:
		np.random.shuffle(lstInStubs)
		np.random.shuffle(lstOutStubs)
		lstOutStubs.resize(nMaxStubs)
		lstInStubs.resize(nMaxStubs)
		nOutStubs = nInStubs = nMaxStubs
	elif nInStubs < nOutStubs:
		np.random.shuffle(lstOutStubs)
		lstOutStubs.resize(nInStubs)
		nOutStubs = nInStubs
	else:
		np.random.shuffle(lstInStubs)
		lstInStubs.resize(nOutStubs)
		nInStubs = nOutStubs
	# on crée le graphe, les noeuds et les stubs
	nRecip = int(np.floor(nInStubs*rFracRecip))
	nEdges = nInStubs + nRecip +1
	# les stubs réciproques
	np.random.shuffle(lstInStubs)
	np.random.shuffle(lstOutStubs)
	lstInRecip = lstInStubs[0:nRecip]
	lstOutRecip = lstOutStubs[0:nRecip]
	lstEdges = np.array([np.concatenate((lstOutStubs,lstInRecip)),np.concatenate((lstInStubs,lstOutRecip))]).astype(int)
	# add edges
	graphFS.add_edge_list(np.transpose(lstEdges))
	remove_self_loops(graphFS)
	remove_parallel_edges(graphFS)
	lstIsolatedVert = find_vertex(graphFS, graphFS.degree_property_map("total"), 0)
	graphFS.remove_vertex(lstIsolatedVert)
#.........這裏部分代碼省略.........
開發者ID:Silmathoron,項目名稱:ResCompPackage,代碼行數:103,代碼來源:graph_generation.py


注:本文中的graph_tool.Graph.remove_vertex方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。