當前位置: 首頁>>代碼示例>>Python>>正文


Python Graph.add_edge_list方法代碼示例

本文整理匯總了Python中graph_tool.Graph.add_edge_list方法的典型用法代碼示例。如果您正苦於以下問題:Python Graph.add_edge_list方法的具體用法?Python Graph.add_edge_list怎麽用?Python Graph.add_edge_list使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在graph_tool.Graph的用法示例。


在下文中一共展示了Graph.add_edge_list方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: split_gt

# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import add_edge_list [as 別名]
 def split_gt():
     g = GTGraph()
     g.add_edge_list(adjacency)
     component_labels = label_components(g, directed=False)[0].a
     components = group(component_labels)
     result = mesh.submesh(components, only_watertight=only_watertight)
     return result
開發者ID:drancom,項目名稱:trimesh,代碼行數:9,代碼來源:graph.py

示例2: gen_er

# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import add_edge_list [as 別名]
def gen_er(dicProperties):
	np.random.seed()
	# initialize graph
	graphER = Graph()
	nNodes = 0
	nEdges = 0
	rDens = 0.0
	if "Nodes" in dicProperties.keys():
		nNodes = dicProperties["Nodes"]
		graphER.add_vertex(nNodes)
		if "Edges" in dicProperties.keys():
			nEdges = dicProperties["Edges"]
			rDens = nEdges / float(nNodes**2)
			dicProperties["Density"] = rDens
		else:
			rDens = dicProperties["Density"]
			nEdges = int(np.floor(rDens*nNodes**2))
			dicProperties["Edges"] = nEdges
	else:
		nEdges = dicProperties["Edges"]
		rDens = dicProperties["Density"]
		nNodes = int(np.floor(np.sqrt(nEdges/rDens)))
		graphER.add_vertex(nNodes)
		dicProperties["Nodes"] = nNodes
	# generate edges
	numTest,numCurrentEdges = 0,0
	while numCurrentEdges != nEdges and numTest < n_MAXTESTS:
		lstEdges = np.random.randint(0,nNodes,(nEdges-numCurrentEdges,2))
		graphER.add_edge_list(lstEdges)
		# remove loops and duplicate edges
		remove_self_loops(graphER)
		remove_parallel_edges(graphER)
		numCurrentEdges = graphER.num_edges()
		numTest += 1
	graphER.reindex_edges()
	nEdges = graphER.num_edges()
	rDens = nEdges / float(nNodes**2)
	# generate types
	rInhibFrac = dicProperties["InhibFrac"]
	lstTypesGen = np.random.uniform(0,1,nEdges)
	lstTypeLimit = np.full(nEdges,rInhibFrac)
	lstIsExcitatory = np.greater(lstTypesGen,lstTypeLimit)
	nExc = np.count_nonzero(lstIsExcitatory)
	epropType = graphER.new_edge_property("int",np.multiply(2,lstIsExcitatory)-np.repeat(1,nEdges)) # excitatory (True) or inhibitory (False)
	graphER.edge_properties["type"] = epropType
	# and weights
	if dicProperties["Weighted"]:
		lstWeights = dicGenWeights[dicProperties["Distribution"]](graphER,dicProperties,nEdges,nExc) # generate the weights
		epropW = graphER.new_edge_property("double",lstWeights) # crée la propriété pour stocker les poids
		graphER.edge_properties["weight"] = epropW
	return graphER
開發者ID:Silmathoron,項目名稱:ResCompPackage,代碼行數:53,代碼來源:graph_generation.py

示例3: facets_gt

# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import add_edge_list [as 別名]
def facets_gt(mesh):
    '''
    Returns lists of facets of a mesh. 
    Facets are defined as groups of faces which are both adjacent and parallel
    
    facets returned reference indices in mesh.faces
    If return_area is True, both the list of facets and their area are returned. 
    '''
    face_idx       = mesh.face_adjacency()
    normal_pairs   = mesh.face_normals[[face_idx]]
    parallel       = np.abs(np.sum(normal_pairs[:,0,:] * normal_pairs[:,1,:], axis=1) - 1) < TOL_PLANAR
    graph_parallel = GTGraph()
    graph_parallel.add_edge_list(face_idx[parallel])

    connected  = label_components(graph_parallel, directed=False)[0].a
    facets_idx = group(connected, min_length=2)
    return facets_idx
開發者ID:brettdonohoo,項目名稱:trimesh,代碼行數:19,代碼來源:graph_ops.py

示例4: split_gt

# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import add_edge_list [as 別名]
def split_gt(mesh, check_watertight=True, only_count=False):
    g = GTGraph()
    g.add_edge_list(mesh.face_adjacency())    
    component_labels = label_components(g, directed=False)[0].a
    if check_watertight: 
        degree = g.degree_property_map('total').a
    meshes     = deque()
    components = group(component_labels)
    if only_count: return len(components)

    for i, current in enumerate(components):
        fill_holes = False
        if check_watertight:
            degree_3 = degree[current] == 3
            degree_2 = degree[current] == 2
            if not degree_3.all():
                if np.logical_or(degree_3, degree_2).all():
                    fill_holes = True
                else: 
                    continue

        # these faces have the original vertex indices
        faces_original = mesh.faces[current]
        face_normals   = mesh.face_normals[current]
        # we find the unique vertex indices, so we can reindex from zero
        unique_vert    = np.unique(faces_original)
        vertices       = mesh.vertices[unique_vert]
        replacement    = np.zeros(unique_vert.max()+1, dtype=np.int)
        replacement[unique_vert] = np.arange(len(unique_vert))
        faces                    = replacement[faces_original]
        new_mesh = mesh.__class__(faces        = faces, 
                                  face_normals = face_normals, 
                                  vertices     = vertices)
        new_meta = deepcopy(mesh.metadata)
        if 'name' in new_meta:
            new_meta['name'] = new_meta['name'] + '_' + str(i)
        new_mesh.metadata.update(new_meta)
        if fill_holes: 
            try:              new_mesh.fill_holes(raise_watertight=True)
            except MeshError: continue
        meshes.append(new_mesh)
    return list(meshes)
開發者ID:brettdonohoo,項目名稱:trimesh,代碼行數:44,代碼來源:graph_ops.py

示例5: components_graphtool

# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import add_edge_list [as 別名]
    def components_graphtool():
        """
        Find connected components using graphtool
        """
        g = GTGraph()
        # make sure all the nodes are in the graph
        g.add_vertex(node_count)
        # add the edge list
        g.add_edge_list(edges)

        labels = np.array(label_components(g, directed=False)[0].a,
                          dtype=np.int64)[:node_count]

        # we have to remove results that contain nodes outside
        # of the specified node set and reindex
        contained = np.zeros(node_count, dtype=np.bool)
        contained[nodes] = True
        index = np.arange(node_count, dtype=np.int64)[contained]

        components = grouping.group(labels[contained], min_len=min_len)
        components = np.array([index[c] for c in components])

        return components
開發者ID:mikedh,項目名稱:trimesh,代碼行數:25,代碼來源:graph.py

示例6: facets_gt

# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import add_edge_list [as 別名]
 def facets_gt():
     graph_parallel = GTGraph()
     graph_parallel.add_edge_list(face_idx[parallel])
     connected  = label_components(graph_parallel, directed=False)[0].a
     facets_idx = group(connected, min_len=2)
     return facets_idx
開發者ID:drancom,項目名稱:trimesh,代碼行數:8,代碼來源:graph.py

示例7: is_watertight_gt

# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import add_edge_list [as 別名]
def is_watertight_gt(mesh):
    g = GTGraph()
    g.add_edge_list(mesh.face_adjacency())    
    degree     = g.degree_property_map('total').a
    watertight = np.equal(degree, 3).all()
    return watertight
開發者ID:brettdonohoo,項目名稱:trimesh,代碼行數:8,代碼來源:graph_ops.py

示例8: gen_fs

# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import add_edge_list [as 別名]
def gen_fs(dicProperties):
	np.random.seed()
	graphFS = Graph()
	# on définit la fraction des arcs à utiliser la réciprocité
	f = dicProperties["Reciprocity"]
	rFracRecip =  f/(2.0-f)
	# on définit toutes les grandeurs de base
	rInDeg = dicProperties["InDeg"]
	rOutDeg = dicProperties["OutDeg"]
	nNodes = 0
	nEdges = 0
	rDens = 0.0
	if "Nodes" in dicProperties.keys():
		nNodes = dicProperties["Nodes"]
		graphFS.add_vertex(nNodes)
		if "Edges" in dicProperties.keys():
			nEdges = dicProperties["Edges"]
			rDens = nEdges / float(nNodes**2)
			dicProperties["Density"] = rDens
		else:
			rDens = dicProperties["Density"]
			nEdges = int(np.floor(rDens*nNodes**2))
			dicProperties["Edges"] = nEdges
	else:
		nEdges = dicProperties["Edges"]
		rDens = dicProperties["Density"]
		nNodes = int(np.floor(np.sqrt(nEdges/rDens)))
		graphFS.add_vertex(nNodes)
		dicProperties["Nodes"] = nNodes
	# on définit le nombre d'arcs à créer
	nArcs = int(np.floor(rDens*nNodes**2)/(1+rFracRecip))
	# on définit les paramètres fonctions de probabilité associées F(x) = A x^{-tau}
	Ai = nArcs*(rInDeg-1)/(nNodes)
	Ao = nArcs*(rOutDeg-1)/(nNodes)
	# on définit les moyennes des distributions de pareto 2 = lomax
	rMi = 1/(rInDeg-2.)
	rMo = 1/(rOutDeg-2.)
	# on définit les trois listes contenant les degrés sortant/entrant/bidirectionnels associés aux noeuds i in range(nNodes)
	lstInDeg = np.random.pareto(rInDeg,nNodes)+1
	lstOutDeg = np.random.pareto(rOutDeg,nNodes)+1
	lstInDeg = np.floor(np.multiply(Ai/np.mean(lstInDeg), lstInDeg)).astype(int)
	lstOutDeg = np.floor(np.multiply(Ao/np.mean(lstOutDeg), lstOutDeg)).astype(int)
	# on génère les stubs qui vont être nécessaires et on les compte
	nInStubs = int(np.sum(lstInDeg))
	nOutStubs = int(np.sum(lstOutDeg))
	lstInStubs = np.zeros(np.sum(lstInDeg))
	lstOutStubs = np.zeros(np.sum(lstOutDeg))
	nStartIn = 0
	nStartOut = 0
	for vert in range(nNodes):
		nInDegVert = lstInDeg[vert]
		nOutDegVert = lstOutDeg[vert]
		for j in range(np.max([nInDegVert,nOutDegVert])):
			if j < nInDegVert:
				lstInStubs[nStartIn+j] += vert
			if j < nOutDegVert:
				lstOutStubs[nStartOut+j] += vert
		nStartOut+=nOutDegVert
		nStartIn+=nInDegVert
	# on vérifie qu'on a à peu près le nombre voulu d'edges
	while nInStubs*(1+rFracRecip)/float(nArcs) < 0.95 :
		vert = np.random.randint(0,nNodes)
		nAddInStubs = int(np.floor(Ai/rMi*(np.random.pareto(rInDeg)+1)))
		lstInStubs = np.append(lstInStubs,np.repeat(vert,nAddInStubs)).astype(int)
		nInStubs+=nAddInStubs
	while nOutStubs*(1+rFracRecip)/float(nArcs) < 0.95 :
		nAddOutStubs = int(np.floor(Ao/rMo*(np.random.pareto(rOutDeg)+1)))
		lstOutStubs = np.append(lstOutStubs,np.repeat(vert,nAddOutStubs)).astype(int)
		nOutStubs+=nAddOutStubs
	# on s'assure d'avoir le même nombre de in et out stubs (1.13 is an experimental correction)
	nMaxStubs = int(1.13*(2.0*nArcs)/(2*(1+rFracRecip)))
	if nInStubs > nMaxStubs and nOutStubs > nMaxStubs:
		np.random.shuffle(lstInStubs)
		np.random.shuffle(lstOutStubs)
		lstOutStubs.resize(nMaxStubs)
		lstInStubs.resize(nMaxStubs)
		nOutStubs = nInStubs = nMaxStubs
	elif nInStubs < nOutStubs:
		np.random.shuffle(lstOutStubs)
		lstOutStubs.resize(nInStubs)
		nOutStubs = nInStubs
	else:
		np.random.shuffle(lstInStubs)
		lstInStubs.resize(nOutStubs)
		nInStubs = nOutStubs
	# on crée le graphe, les noeuds et les stubs
	nRecip = int(np.floor(nInStubs*rFracRecip))
	nEdges = nInStubs + nRecip +1
	# les stubs réciproques
	np.random.shuffle(lstInStubs)
	np.random.shuffle(lstOutStubs)
	lstInRecip = lstInStubs[0:nRecip]
	lstOutRecip = lstOutStubs[0:nRecip]
	lstEdges = np.array([np.concatenate((lstOutStubs,lstInRecip)),np.concatenate((lstInStubs,lstOutRecip))]).astype(int)
	# add edges
	graphFS.add_edge_list(np.transpose(lstEdges))
	remove_self_loops(graphFS)
	remove_parallel_edges(graphFS)
	lstIsolatedVert = find_vertex(graphFS, graphFS.degree_property_map("total"), 0)
	graphFS.remove_vertex(lstIsolatedVert)
#.........這裏部分代碼省略.........
開發者ID:Silmathoron,項目名稱:ResCompPackage,代碼行數:103,代碼來源:graph_generation.py


注:本文中的graph_tool.Graph.add_edge_list方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。