當前位置: 首頁>>代碼示例>>C#>>正文


C# Instances.setClassIndex方法代碼示例

本文整理匯總了C#中weka.core.Instances.setClassIndex方法的典型用法代碼示例。如果您正苦於以下問題:C# Instances.setClassIndex方法的具體用法?C# Instances.setClassIndex怎麽用?C# Instances.setClassIndex使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在weka.core.Instances的用法示例。


在下文中一共展示了Instances.setClassIndex方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。

示例1: Classify

        public static string Classify(bool useRubine, float duration, bool righthandedness, List<float> SpeakerAngles, PointCollection pointHist, StylusPointCollection S, List<List<int>> hist, List<List<int>> ihist)
        {
            // Convert all parameters to format used in GestureTests
            List<Vector2> InterpretedPoints = new List<Vector2>();
            List<Vector2> StylusPoints = new List<Vector2>();
            List<Vector2> VelocityHistory = new List<Vector2>();
            List<Vector2> InverseVelocityHistory = new List<Vector2>();
            foreach(Point P in pointHist)
                InterpretedPoints.Add(new Vector2((float)P.X,(float)P.Y));
            foreach(StylusPoint P in S)
                StylusPoints.Add(new Vector2((float)P.X,(float)P.Y));
            for (int i = 0; i < hist[0].Count; i++)
            {
                VelocityHistory.Add(new Vector2(hist[0][i], hist[1][i]));
                InverseVelocityHistory.Add(new Vector2(ihist[0][i], ihist[1][i]));
            }

            // Create a new Sample, compute the features, and classify
            GS = new GestureSample(GestureTests.Types.GestureType.unknown, righthandedness,duration,SpeakerAngles,InterpretedPoints,StylusPoints,VelocityHistory,InverseVelocityHistory);
            GS.ComputeFeatures(GestureFeatures.PointsStroke);

            if (useRubine)
                return EC.Recognizer.Classify(GS).ToString();
            WriteARFF();

            Instances test = new Instances(new java.io.FileReader("outfile.arff"));
            test.setClassIndex(0);

            double clsLabel = cls.classifyInstance(test.instance(0));
            test.instance(0).setClassValue(clsLabel);

            // Return the appropriate label
            return ((GestureType2D)((int)clsLabel+1)).ToString();
        }
開發者ID:ISUE,項目名稱:Multiwave,代碼行數:34,代碼來源:WekaHelper.cs

示例2: classifyTest

    // Test the classification result of each map that a user played,
    // with the data available as if they were playing through it
    public static void classifyTest(String dataString, String playerID)
    {
        String results = "";
        try {
            java.io.StringReader stringReader = new java.io.StringReader(dataString);
            java.io.BufferedReader buffReader = new java.io.BufferedReader(stringReader);

            /* NOTE THAT FOR NAIVE BAYES ALL WEIGHTS CAN BE = 1*/
            //weka.core.converters.ConverterUtils.DataSource source = new weka.core.converters.ConverterUtils.DataSource("iris.arff");
            weka.core.Instances data = new weka.core.Instances(buffReader); //source.getDataSet();
            // setting class attribute if the data format does not provide this information
            // For example, the XRFF format saves the class attribute information as well
            if (data.classIndex() == -1)
                data.setClassIndex(data.numAttributes() - 1);

            weka.classifiers.Classifier cl;
            for (int i = 3; i < data.numInstances(); i++) {
                cl = new weka.classifiers.bayes.NaiveBayes();
                //cl = new weka.classifiers.trees.J48();
                //cl = new weka.classifiers.lazy.IB1();
                //cl = new weka.classifiers.functions.MultilayerPerceptron();
                ((weka.classifiers.functions.MultilayerPerceptron)cl).setHiddenLayers("12");

                weka.core.Instances subset = new weka.core.Instances(data,0,i);
                cl.buildClassifier(subset);

                weka.classifiers.Evaluation eval = new weka.classifiers.Evaluation(subset);
         		eval.crossValidateModel(cl, subset, 3, new java.util.Random(1));
                results = results + eval.pctCorrect(); // For accuracy measurement
                /* For Mathews Correlation Coefficient */
                //double TP = eval.numTruePositives(1);
                //double FP = eval.numFalsePositives(1);
                //double TN = eval.numTrueNegatives(1);
                //double FN = eval.numFalseNegatives(1);
                //double correlationCoeff = ((TP*TN)-(FP*FN))/Math.Sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN));
                //results = results + correlationCoeff;
                if (i != data.numInstances()-1)
                    results = results + ", ";
                if(i == data.numInstances()-1)
                    Debug.Log("Player: " + playerID + ", Num Maps: " + data.numInstances() + ", AUC: " + eval.areaUnderROC(1));
            }
        } catch (java.lang.Exception ex)
        {
            Debug.LogError(ex.getMessage());
        }
        // Write values to file for a matlab read
        // For accuracy
         	StreamWriter writer = new StreamWriter("DataForMatlab/"+playerID+"_CrossFoldValidations_NeuralNet.txt");

        //StreamWriter writer = new StreamWriter("DataForMatlab/"+playerID+"_CrossFoldCorrCoeff.txt"); // For mathews cc
        writer.WriteLine(results);
        writer.Close();
        Debug.Log(playerID + " has been written to file");
    }
開發者ID:AlexanderMazaletskiy,項目名稱:PCG-Angry-Bots,代碼行數:56,代碼來源:wekaAttributeSelectionCounter.cs

示例3: InitializeClassifier

    /* Use when the player logs in to initially create the classifier with data from server */
    public void InitializeClassifier(String dataString)
    {
        try {
            java.io.StringReader stringReader = new java.io.StringReader(dataString);
            java.io.BufferedReader buffReader = new java.io.BufferedReader(stringReader);

            playerData = new weka.core.Instances(buffReader);

            /* State where in each Instance the class attribute is, if its not already specified by the file */
            if (playerData.classIndex() == -1)
                playerData.setClassIndex(playerData.numAttributes() - 1);

            /* NAIVE BAYES */
            //classifier = new weka.classifiers.bayes.NaiveBayes();

            /* NEURAL NET */
            //classifier = new weka.classifiers.functions.MultilayerPerceptron();
            //((weka.classifiers.functions.MultilayerPerceptron)classifier).setHiddenLayers("12");

            /* J48 TREE */
            //classifier = new weka.classifiers.trees.J48();

            /* IB1 NEAREST NEIGHBOUR */
            //classifier = new weka.classifiers.lazy.IB1();

            /* RANDOM FOREST */
            classifier = new weka.classifiers.trees.RandomForest();

            classifier.buildClassifier(playerData);
            Debug.Log("Initialized Classifier");
        }
        catch (java.lang.Exception ex)
        {
            Debug.LogError(ex.getMessage());
        }
    }
開發者ID:AlexanderMazaletskiy,項目名稱:PCG-Angry-Bots,代碼行數:37,代碼來源:PCGWekaClassifier.cs

示例4: CreateInstanceForNClasses

        /// <summary>
        /// Create a single instance for WEKA
        /// </summary>
        /// <param name="NClasses">Number of classes</param>
        /// <returns>the weka instances</returns>
        public Instances CreateInstanceForNClasses(cInfoClass InfoClass)
        {
            List<double> AverageList = new List<double>();

            for (int i = 0; i < Parent.ListDescriptors.Count; i++)
                if (Parent.ListDescriptors[i].IsActive()) AverageList.Add(GetAverageValuesList()[i]);

            weka.core.FastVector atts = new FastVector();

            List<string> NameList = Parent.ListDescriptors.GetListNameActives();

            for (int i = 0; i < NameList.Count; i++)
                atts.addElement(new weka.core.Attribute(NameList[i]));

            weka.core.FastVector attVals = new FastVector();
            for (int i = 0; i < InfoClass.NumberOfClass; i++)
                attVals.addElement("Class" + i);

            atts.addElement(new weka.core.Attribute("Class__", attVals));

            Instances data1 = new Instances("SingleInstance", atts, 0);

            double[] newTable = new double[AverageList.Count + 1];
            Array.Copy(AverageList.ToArray(), 0, newTable, 0, AverageList.Count);
            //newTable[AverageList.Count] = 1;

            data1.add(new DenseInstance(1.0, newTable));
            data1.setClassIndex((data1.numAttributes() - 1));
            return data1;
        }
開發者ID:cyrenaique,項目名稱:HCS,代碼行數:35,代碼來源:cWell.cs

示例5: analyze

        // ---- OPERATIONS ----
        ///    
        ///     <summary> * Analyze the time series data. The similarity matrices are created
        ///     * and filled with euclidean distances based on the tolerance values
        ///     * for similarity.
        ///     * </summary>
        ///     * <param name="data"> data to be analyzed </param>
        public override void analyze(Instances data)
        {
            data.setClassIndex(data.numAttributes() - 1);

            m_data = data;
            m_rangeTemplates.setUpper(data.numAttributes());

            //Date startFT = new Date();

            // compute fourier transform
            FourierTransform dftFilter = new FourierTransform();
            dftFilter.setInputFormat(data);
            dftFilter.setNumCoeffs(getNumCoeffs());
            dftFilter.setUseFFT(getUseFFT());
            Instances fourierdata = Filter.useFilter(data, dftFilter);

            Date endFT = new Date();

            // time taken for FT
            //m_DFTTime = new Date(endFT.getTime() - startFT.getTime());

            int numdim = data.numAttributes();
            //ORIGINAL LINE: m_distancesFreq = new double[numdim][numdim];
            //JAVA TO VB & C# CONVERTER NOTE: The following call to the 'RectangularArrays' helper class reproduces the rectangular array initialization that is automatic in Java:
            m_distancesFreq = RectangularArrays.ReturnRectangularDoubleArray(numdim, numdim);
            //ORIGINAL LINE: m_distancesTime = new double[numdim][numdim];
            //JAVA TO VB & C# CONVERTER NOTE: The following call to the 'RectangularArrays' helper class reproduces the rectangular array initialization that is automatic in Java:
            m_distancesTime = RectangularArrays.ReturnRectangularDoubleArray(numdim, numdim);

            //long ftDistTime = 0;
            //long tDistTime = 0;

            // compute similarity matrices
            for (int i = 0; i < data.numAttributes(); ++i)
            {
                for (int j = 0; j < i; j++)
                {
                // not for template sequences
                    if (m_rangeTemplates.isInRange(i) && m_rangeTemplates.isInRange(j))
                    {
                        continue;
                    }

                    //Date startFTDist = new Date();

                // Compute the Euclidean distance between 2 dims using FT
                    double[] reCT = fourierdata.attributeToDoubleArray(2 * i);
                    double[] imCT = fourierdata.attributeToDoubleArray(2 * i + 1);

                    double[] reCS = fourierdata.attributeToDoubleArray(2 * j);
                    double[] imCS = fourierdata.attributeToDoubleArray(2 * j + 1);

                    m_distancesFreq[i][j] = computeEuclidean(reCT, imCT, reCS, imCS);

                // if found similar using FT
                    if (m_distancesFreq[i][j] <= m_epsilon)
                    {
                    // then compute normal Euclidean distances between the 2 dims
                        double[] x = data.attributeToDoubleArray(i);
                        double[] y = data.attributeToDoubleArray(j);

                        m_distancesTime[i][j] = computeEuclidean(x, y);
                    }

                    //Date endFTDist = new Date();

                // time taken for computing similarity based on FT
                    //ftDistTime += (endFTDist.getTime() - startFTDist.getTime());

                //    Date startDist = new Date();

                //// compute similarity matrices (brute force)
                //    double[] x1 = data.attributeToDoubleArray(i);
                //    double[] y1 = data.attributeToDoubleArray(j);

                //    computeEuclidean(x1, y1);

                //    Date endDist = new Date();
                //// time taken for computing similarity based brute force method
                //    tDistTime += (endDist.getTime() - startDist.getTime());

                }
            }

            //m_FTEuclideanTime = new Date(ftDistTime);
            //m_EuclideanTime = new Date(tDistTime);
        }
開發者ID:wushian,項目名稱:MLEA,代碼行數:94,代碼來源:SimilarityAnalysis.cs

示例6: PerformTraining

        /// <summary>
        /// Build the learning model for classification
        /// </summary>
        /// <param name="InstancesList">list of instances </param>
        /// <param name="NumberofClusters">Number of Clusters</param>
        /// <param name="TextBoxForFeedback">Text box for the results (can be NULL)</param>
        /// <param name="PanelForVisualFeedback">Panel to display visual results if avalaible (can be NULL)</param>
        public Classifier PerformTraining(FormForClassificationInfo WindowForClassificationParam, Instances InstancesList, /*int NumberofClusters,*/ RichTextBox TextBoxForFeedback,
                                            Panel PanelForVisualFeedback, out weka.classifiers.Evaluation ModelEvaluation, bool IsCellular)
        {
            //   weka.classifiers.Evaluation ModelEvaluation = null;
            // FormForClassificationInfo WindowForClassificationParam = new FormForClassificationInfo(GlobalInfo);
            ModelEvaluation = null;
            //  if (WindowForClassificationParam.ShowDialog() != System.Windows.Forms.DialogResult.OK) return null;
            //   weka.classifiers.Evaluation ModelEvaluation = new Evaluation(

            cParamAlgo ClassifAlgoParams = WindowForClassificationParam.GetSelectedAlgoAndParameters();
            if (ClassifAlgoParams == null) return null;

            //this.Cursor = Cursors.WaitCursor;

            //  cParamAlgo ClassificationAlgo = WindowForClassificationParam.GetSelectedAlgoAndParameters();
            cListValuesParam Parameters = ClassifAlgoParams.GetListValuesParam();

            //Classifier this.CurrentClassifier = null;

            // -------------------------- Classification -------------------------------
            // create the instances
            // InstancesList = this.ListInstances;
            this.attValsWithoutClasses = new FastVector();

            if (IsCellular)
                for (int i = 0; i < cGlobalInfo.ListCellularPhenotypes.Count; i++)
                    this.attValsWithoutClasses.addElement(cGlobalInfo.ListCellularPhenotypes[i].Name);
            else
                for (int i = 0; i < cGlobalInfo.ListWellClasses.Count; i++)
                    this.attValsWithoutClasses.addElement(cGlobalInfo.ListWellClasses[i].Name);

            InstancesList.insertAttributeAt(new weka.core.Attribute("Class", this.attValsWithoutClasses), InstancesList.numAttributes());
            //int A = Classes.Count;
            for (int i = 0; i < Classes.Count; i++)
                InstancesList.get(i).setValue(InstancesList.numAttributes() - 1, Classes[i]);

            InstancesList.setClassIndex(InstancesList.numAttributes() - 1);

            weka.core.Instances train = new weka.core.Instances(InstancesList, 0, InstancesList.numInstances());

            if (PanelForVisualFeedback != null)
                PanelForVisualFeedback.Controls.Clear();

            #region List classifiers

            #region J48
            if (ClassifAlgoParams.Name == "J48")
            {
                this.CurrentClassifier = new weka.classifiers.trees.J48();
                ((J48)this.CurrentClassifier).setMinNumObj((int)Parameters.ListDoubleValues.Get("numericUpDownMinInstLeaf").Value);
                ((J48)this.CurrentClassifier).setConfidenceFactor((float)Parameters.ListDoubleValues.Get("numericUpDownConfFactor").Value);
                ((J48)this.CurrentClassifier).setNumFolds((int)Parameters.ListDoubleValues.Get("numericUpDownNumFolds").Value);
                ((J48)this.CurrentClassifier).setUnpruned((bool)Parameters.ListCheckValues.Get("checkBoxUnPruned").Value);
                ((J48)this.CurrentClassifier).setUseLaplace((bool)Parameters.ListCheckValues.Get("checkBoxLaplacianSmoothing").Value);
                ((J48)this.CurrentClassifier).setSeed((int)Parameters.ListDoubleValues.Get("numericUpDownSeedNumber").Value);
                ((J48)this.CurrentClassifier).setSubtreeRaising((bool)Parameters.ListCheckValues.Get("checkBoxSubTreeRaising").Value);

                //   CurrentClassif.SetJ48Tree((J48)this.CurrentClassifier, Classes.Length);
                this.CurrentClassifier.buildClassifier(train);
                // display results training
                // display tree
                if (PanelForVisualFeedback != null)
                {
                    GViewer GraphView = DisplayTree(GlobalInfo, ((J48)this.CurrentClassifier), IsCellular).gViewerForTreeClassif;
                    GraphView.Size = new System.Drawing.Size(PanelForVisualFeedback.Width, PanelForVisualFeedback.Height);
                    GraphView.Anchor = (AnchorStyles.Bottom | AnchorStyles.Top | AnchorStyles.Left | AnchorStyles.Right);
                    PanelForVisualFeedback.Controls.Clear();
                    PanelForVisualFeedback.Controls.Add(GraphView);
                }
            }
            #endregion
            #region Random Tree
            else if (ClassifAlgoParams.Name == "RandomTree")
            {
                this.CurrentClassifier = new weka.classifiers.trees.RandomTree();

                if ((bool)Parameters.ListCheckValues.Get("checkBoxMaxDepthUnlimited").Value)
                    ((RandomTree)this.CurrentClassifier).setMaxDepth(0);
                else
                    ((RandomTree)this.CurrentClassifier).setMaxDepth((int)Parameters.ListDoubleValues.Get("numericUpDownMaxDepth").Value);
                ((RandomTree)this.CurrentClassifier).setSeed((int)Parameters.ListDoubleValues.Get("numericUpDownSeed").Value);
                ((RandomTree)this.CurrentClassifier).setMinNum((double)Parameters.ListDoubleValues.Get("numericUpDownMinWeight").Value);

                if ((bool)Parameters.ListCheckValues.Get("checkBoxIsBackfitting").Value)
                {
                    ((RandomTree)this.CurrentClassifier).setNumFolds((int)Parameters.ListDoubleValues.Get("numericUpDownBackFittingFolds").Value);
                }
                else
                {
                    ((RandomTree)this.CurrentClassifier).setNumFolds(0);
                }
                this.CurrentClassifier.buildClassifier(train);
                //string StringForTree = ((RandomTree)this.CurrentClassifier).graph().Remove(0, ((RandomTree)this.CurrentClassifier).graph().IndexOf("{") + 2);
//.........這裏部分代碼省略.........
開發者ID:cyrenaique,項目名稱:HCSA,代碼行數:101,代碼來源:cMachineLearning.cs

示例7: CreateInstancesWithClassesWithPlateBasedDescriptor

        /// <summary>
        /// Create an instances structure with classes for supervised methods
        /// </summary>
        /// <param name="NumClass"></param>
        /// <returns></returns>
        public Instances CreateInstancesWithClassesWithPlateBasedDescriptor(int NumberOfClass)
        {
            weka.core.FastVector atts = new FastVector();

            int columnNo = 0;

            for (int i = 0; i < ParentScreening.ListPlateBaseddescriptorNames.Count; i++)
            {
                atts.addElement(new weka.core.Attribute(ParentScreening.ListPlateBaseddescriptorNames[i]));
                columnNo++;
            }

            weka.core.FastVector attVals = new FastVector();

            for (int i = 0; i < NumberOfClass; i++)
                attVals.addElement("Class" + (i).ToString());

            atts.addElement(new weka.core.Attribute("Class", attVals));

            Instances data1 = new Instances("MyRelation", atts, 0);
            int IdxWell = 0;
            foreach (cWell CurrentWell in this.ListActiveWells)
            {
                if (CurrentWell.GetCurrentClassIdx() == -1) continue;
                double[] vals = new double[data1.numAttributes()];
                int IdxCol = 0;
                for (int Col = 0; Col < ParentScreening.ListPlateBaseddescriptorNames.Count; Col++)
                {
                    vals[IdxCol++] = CurrentWell.ListPlateBasedDescriptors[Col].GetValue();
                }
                vals[columnNo] = CurrentWell.GetCurrentClassIdx();
                data1.add(new DenseInstance(1.0, vals));
                IdxWell++;
            }
            data1.setClassIndex((data1.numAttributes() - 1));

            return data1;
        }
開發者ID:cyrenaique,項目名稱:HCSA,代碼行數:43,代碼來源:cPlate.cs

示例8: CreateInstancesWithClasses

        /// <summary>
        /// Create an instances structure with classes for supervised methods
        /// </summary>
        /// <param name="NumClass"></param>
        /// <returns></returns>
        public Instances CreateInstancesWithClasses(List<bool> ListClassSelected)
        {
            weka.core.FastVector atts = new FastVector();
            int columnNo = 0;
            for (int i = 0; i < ParentScreening.ListDescriptors.Count; i++)
            {
                if (ParentScreening.ListDescriptors[i].IsActive() == false) continue;
                atts.addElement(new weka.core.Attribute(ParentScreening.ListDescriptors[i].GetName()));
                columnNo++;
            }

            weka.core.FastVector attVals = new FastVector();
            foreach (var item in cGlobalInfo.ListWellClasses)
            {
                attVals.addElement(item.Name);
            }

            atts.addElement(new weka.core.Attribute("ClassAttribute", attVals));

            Instances data1 = new Instances("MyRelation", atts, 0);
            int IdxWell = 0;
            foreach (cWell CurrentWell in this.ListActiveWells)
            {
                if (!ListClassSelected[CurrentWell.GetCurrentClassIdx()]) continue;
                double[] vals = new double[data1.numAttributes()];

                int IdxCol = 0;
                for (int Col = 0; Col < ParentScreening.ListDescriptors.Count; Col++)
                {
                    if (ParentScreening.ListDescriptors[Col].IsActive() == false) continue;
                    vals[IdxCol++] = CurrentWell.ListSignatures[Col].GetValue();
                }
                vals[columnNo] = CurrentWell.GetCurrentClassIdx();
                data1.add(new DenseInstance(1.0, vals));
                IdxWell++;
            }
            data1.setClassIndex((data1.numAttributes() - 1));

            return data1;
        }
開發者ID:cyrenaique,項目名稱:HCSA,代碼行數:45,代碼來源:cPlate.cs

示例9: classifyTest

    // Test the classification result of each map that a user played,
    // with the data available as if they were playing through it
    public static void classifyTest(String dataString, String playerID)
    {
        try {
            java.io.StringReader stringReader = new java.io.StringReader(dataString);
            java.io.BufferedReader buffReader = new java.io.BufferedReader(stringReader);

            /* NOTE THAT FOR NAIVE BAYES ALL WEIGHTS CAN BE = 1*/
            //weka.core.converters.ConverterUtils.DataSource source = new weka.core.converters.ConverterUtils.DataSource("iris.arff");
            weka.core.Instances thisData = new weka.core.Instances(buffReader); //source.getDataSet();
            if (thisData.classIndex() == -1)
                thisData.setClassIndex(thisData.numAttributes() - 1);

            weka.core.Instances thisUniqueData = new weka.core.Instances(thisData);
            if (thisUniqueData.classIndex() == -1)
                thisUniqueData.setClassIndex(thisUniqueData.numAttributes() - 1);
            thisUniqueData.delete();

            if (allUniqueData == null) {
                allUniqueData = new weka.core.Instances(thisData);
                if (allUniqueData.classIndex() == -1)
                    allUniqueData.setClassIndex(allUniqueData.numAttributes() - 1);
                allUniqueData.delete();
            }

            weka.core.InstanceComparator com = new weka.core.InstanceComparator(false);

            for (int i = 0; i < thisData.numInstances(); i++)
            {
                bool dup = false;
                for (int j = 0; j < allUniqueData.numInstances(); j++)
                {
                    if (com.compare(thisData.instance(i),allUniqueData.instance(j)) == 0)
                    {
                        Debug.Log("Duplicate found!");
                        dup = true;
                        break;
                    }
                }
                if (!dup)
                    allUniqueData.add(thisData.instance(i));
                else
                    dupInstances++;
            }

            for (int i = 0; i < thisData.numInstances(); i++)
            {
                bool dup = false;
                for (int j = 0; j < thisUniqueData.numInstances(); j++)
                {
                    if (com.compare(thisData.instance(i),thisUniqueData.instance(j)) == 0)
                    {
                        Debug.Log("Duplicate found!");
                        dup = true;
                        break;
                    }
                }
                if (!dup)
                    thisUniqueData.add(thisData.instance(i));
                else
                    dupInstancesSamePlayer++;
            }

            //Debug.Log("All Data Instance Count = " + thisData.numInstances());
            //Debug.Log("Unique Data Instance Count = " + thisUniqueData.numInstances());
            //Debug.Log("Done!");

        } catch (java.lang.Exception ex)
        {
            Debug.LogError(ex.getMessage());
        }
    }
開發者ID:AlexanderMazaletskiy,項目名稱:PCG-Angry-Bots,代碼行數:73,代碼來源:wekaDuplicateFilter.cs

示例10: createWhyInstances

 private Instances createWhyInstances()
 {
     FastVector fvWhy = createWhyFastVector();
     Instances whyInstances = new Instances("WhyInstances", fvWhy, listSecondaryWhyCandidates.Count);
     foreach (Token candidate in listSecondaryWhyCandidates)
     {
         if (candidate.Value == null) continue;
         Instance whyInstance = createSingleWhyInstance(fvWhy, candidate);
         whyInstance.setDataset(whyInstances);
         whyInstances.add(whyInstance);
     }
     whyInstances.setClassIndex(fvWhy.size() - 1);
     return whyInstances;
 }
開發者ID:yaojohnpaul,項目名稱:WhatWhyML,代碼行數:14,代碼來源:Identifier.cs


注:本文中的weka.core.Instances.setClassIndex方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。