當前位置: 首頁>>代碼示例>>C#>>正文


C# Instances.attribute方法代碼示例

本文整理匯總了C#中weka.core.Instances.attribute方法的典型用法代碼示例。如果您正苦於以下問題:C# Instances.attribute方法的具體用法?C# Instances.attribute怎麽用?C# Instances.attribute使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在weka.core.Instances的用法示例。


在下文中一共展示了Instances.attribute方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。

示例1: Build

 public void Build()
 {
     this.featureIndex = new int[this.features.Count];
     for(int i=0;(i< this.features.Count);i++)
     {
         for (int j = 0; (j < Extractor.ArffAttributeLabels.Length); j++)
             if (((string)this.features[i]).Equals(Extractor.ArffAttributeLabels[j]))
             {
                 this.featureIndex[i] = j;
                 break;
             }
     }
     instances = new Instances(new StreamReader(this.filename));
     instances.Class = instances.attribute(this.features.Count);
     classifier = new J48();
     classifier.buildClassifier(instances);
     
     //setup the feature vector 
     //fvWekaAttributes = new FastVector(this.features.Count + 1);
     //for (i = 0; (i < this.features.Count); i++)
     //    fvWekaAttributes.addElement(new weka.core.Attribute(this.features[i]));
     
     
     //Setup the class attribute
     //FastVector fvClassVal = new FastVector();
     //for (i = 0; (i < this.classes.Count); i++)           
      //   fvClassVal.addElement(this.classes[i]);            
     //weka.core.Attribute ClassAttribute = new weka.core.Attribute("activity", fvClassVal);
 }
開發者ID:intille,項目名稱:mitessoftware,代碼行數:29,代碼來源:DTClassifier.cs

示例2: loadLabelsMeta

 private LabelsMetaData loadLabelsMeta(Instances data, int numLabels)
 {
     LabelsMetaDataImpl labelsData = new LabelsMetaDataImpl();
     int numAttributes = data.numAttributes();
     for (int index = numAttributes - numLabels; index < numAttributes; index++) {
         String attrName = data.attribute(index).name();
         labelsData.addRootNode(new LabelNodeImpl(attrName));
     }
     return labelsData;
 }
開發者ID:KommuSoft,項目名稱:MLTag,代碼行數:10,代碼來源:MLKNN.cs

示例3: minsAndMaxs

		/// <summary> Returns the minsAndMaxs of the index.th subset.</summary>
		public double[][] minsAndMaxs(Instances data, double[][] minsAndMaxs, int index)
		{
			
			double[][] newMinsAndMaxs = new double[data.numAttributes()][];
			for (int i = 0; i < data.numAttributes(); i++)
			{
				newMinsAndMaxs[i] = new double[2];
			}
			
			for (int i = 0; i < data.numAttributes(); i++)
			{
				newMinsAndMaxs[i][0] = minsAndMaxs[i][0];
				newMinsAndMaxs[i][1] = minsAndMaxs[i][1];
				if (i == m_attIndex)
					if (data.attribute(m_attIndex).Nominal)
						newMinsAndMaxs[m_attIndex][1] = 1;
					else
						newMinsAndMaxs[m_attIndex][1 - index] = m_splitPoint;
			}
			
			return newMinsAndMaxs;
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:23,代碼來源:C45Split.cs

示例4: sourceExpression

		/// <summary> Returns a string containing java source code equivalent to the test
		/// made at this node. The instance being tested is called "i".
		/// 
		/// </summary>
		/// <param name="index">index of the nominal value tested
		/// </param>
		/// <param name="data">the data containing instance structure info
		/// </param>
		/// <returns> a value of type 'String'
		/// </returns>
		public override System.String sourceExpression(int index, Instances data)
		{
			
			System.Text.StringBuilder expr = null;
			if (index < 0)
			{
				return "i[" + m_attIndex + "] == null";
			}
			if (data.attribute(m_attIndex).Nominal)
			{
				expr = new System.Text.StringBuilder("i[");
				expr.Append(m_attIndex).Append("]");
				expr.Append(".equals(\"").Append(data.attribute(m_attIndex).value_Renamed(index)).Append("\")");
			}
			else
			{
				expr = new System.Text.StringBuilder("((Double) i[");
				expr.Append(m_attIndex).Append("])");
				if (index == 0)
				{
					expr.Append(".doubleValue() <= ").Append(m_splitPoint);
				}
				else
				{
					expr.Append(".doubleValue() > ").Append(m_splitPoint);
				}
			}
			return expr.ToString();
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:39,代碼來源:C45Split.cs

示例5: rightSide

		/// <summary> Prints the condition satisfied by instances in a subset.
		/// 
		/// </summary>
		/// <param name="index">of subset 
		/// </param>
		/// <param name="data">training set.
		/// </param>
		public override System.String rightSide(int index, Instances data)
		{
			
			System.Text.StringBuilder text;
			
			text = new System.Text.StringBuilder();
			if (data.attribute(m_attIndex).Nominal)
				text.Append(" = " + data.attribute(m_attIndex).value_Renamed(index));
			else if (index == 0)
				text.Append(" <= " + Utils.doubleToString(m_splitPoint, 6));
			else
				text.Append(" > " + Utils.doubleToString(m_splitPoint, 6));
			return text.ToString();
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:21,代碼來源:C45Split.cs

示例6: leftSide

		/// <summary> Prints left side of condition..
		/// 
		/// </summary>
		/// <param name="data">training set.
		/// </param>
		public override System.String leftSide(Instances data)
		{
			
			return data.attribute(m_attIndex).name();
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:10,代碼來源:C45Split.cs

示例7: buildClassifier

		/// <summary> Creates a C4.5-type split on the given data. Assumes that none of
		/// the class values is missing.
		/// 
		/// </summary>
		/// <exception cref="Exception">if something goes wrong
		/// </exception>
		public override void  buildClassifier(Instances trainInstances)
		{
			
			// Initialize the remaining instance variables.
			m_numSubsets = 0;
			//UPGRADE_TODO: The equivalent in .NET for field 'java.lang.Double.MAX_VALUE' may return a different value. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1043'"
			m_splitPoint = System.Double.MaxValue;
			m_infoGain = 0;
			m_gainRatio = 0;
			
			// Different treatment for enumerated and numeric
			// attributes.
			if (trainInstances.attribute(m_attIndex).Nominal)
			{
				m_complexityIndex = trainInstances.attribute(m_attIndex).numValues();
				m_index = m_complexityIndex;
				handleEnumeratedAttribute(trainInstances);
			}
			else
			{
				m_complexityIndex = 2;
				m_index = 0;
				trainInstances.sort(trainInstances.attribute(m_attIndex));
				handleNumericAttribute(trainInstances);
			}
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:32,代碼來源:C45Split.cs

示例8: MITesDataCollectionForm

        public MITesDataCollectionForm(string dataDirectory, string arffFile, bool isHierarchical)
        { 
        

                       //where data is being stored
            this.dataDirectory = dataDirectory;

            //Initialize high resolution unix timer
            UnixTime.InitializeTime();

            //Initialize and start GUI progress thread
            progressMessage = null;
            aProgressThread = new Thread(new ThreadStart(ProgressThread));
            aProgressThread.Start();


            #region Load Configuration files
            //load the activity and sensor configuration files
            progressMessage = "Loading XML protocol and sensors ...";
            AXML.Reader reader = new AXML.Reader(Constants.MASTER_DIRECTORY, dataDirectory);
#if (!PocketPC)
            if (reader.validate() == false)
            {
                throw new Exception("Error Code 0: XML format error - activities.xml does not match activities.xsd!");
            }
            else
            {
#endif
            this.annotation = reader.parse();
            this.annotation.DataDirectory = dataDirectory;
            SXML.Reader sreader = new SXML.Reader(Constants.MASTER_DIRECTORY, dataDirectory);
#if (!PocketPC)

                if (sreader.validate() == false)
                {
                    throw new Exception("Error Code 0: XML format error - sensors.xml does not match sensors.xsd!");
                }
                else
                {
#endif
            this.sensors = sreader.parse(Constants.MAX_CONTROLLERS);
            progressMessage += " Completed\r\n";

            //TODO: remove BT components
            progressMessage += "Loading configuration file ...";
            MITesFeatures.core.conf.ConfigurationReader creader = new MITesFeatures.core.conf.ConfigurationReader(dataDirectory);
            this.configuration = creader.parse();
            progressMessage += " Completed\r\n";
#if (!PocketPC)
                }
            }
#endif
            #endregion Load Configuration files



            #region Initialize External Data Reception Channels

                //Initialize 1 master decoder
                this.masterDecoder = new MITesDecoder();

                //Initialize the software mode
                isExtracting = false;
                isCollectingDetailedData = false;
                isPlotting = true;
                isClassifying = true;


                #region Initialize Feature Extraction
                this.isExtracting = false;
                if (this.sensors.TotalReceivers > 0) // if there is at least 1 MIT
                    //Extractor.Initialize(this.mitesDecoders[0], dataDirectory, this.annotation, this.sensors, this.configuration);
                    Extractor.Initialize(this.masterDecoder, dataDirectory, this.annotation, this.sensors, this.configuration);
                else if (this.sensors.Sensors.Count > 0) // only built in
                    Extractor.Initialize(this.masterDecoder, dataDirectory, this.annotation, this.sensors, this.configuration);
                #endregion Initialize Feature Extraction

                labelIndex = new Hashtable();
                instances = new Instances(new StreamReader(arffFile));
                instances.Class = instances.attribute(Extractor.ArffAttributeLabels.Length);
                classifier = new J48();
                if (!File.Exists("model.xml"))
                {
                    classifier.buildClassifier(instances);
                    TextWriter tc = new StreamWriter("model.xml");
                    classifier.toXML(tc);
                    tc.Flush();
                    tc.Close();
                }
                else
                    classifier.buildClassifier("model.xml", instances);

               
                fvWekaAttributes = new FastVector(Extractor.ArffAttributeLabels.Length + 1);
                for (int i = 0; (i < Extractor.ArffAttributeLabels.Length); i++)
                    fvWekaAttributes.addElement(new weka.core.Attribute(Extractor.ArffAttributeLabels[i]));

                FastVector fvClassVal = new FastVector();
                labelCounters = new int[((AXML.Category)this.annotation.Categories[0]).Labels.Count + 1];
                activityLabels = new string[((AXML.Category)this.annotation.Categories[0]).Labels.Count + 1];
//.........這裏部分代碼省略.........
開發者ID:intille,項目名稱:mitessoftware,代碼行數:101,代碼來源:MITesDataCollectionForm.cs

示例9: rightSide

		/// <summary> Prints the condition satisfied by instances in a subset.
		/// 
		/// </summary>
		/// <param name="index">of subset and training set.
		/// </param>
		public override System.String rightSide(int index, Instances data)
		{
			
			System.Text.StringBuilder text;
			
			text = new System.Text.StringBuilder();
			if (data.attribute(m_attIndex).Nominal)
			{
				if (index == 0)
				{
					//UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'"
					text.Append(" = " + data.attribute(m_attIndex).value_Renamed((int) m_splitPoint));
				}
				else
				{
					//UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'"
					text.Append(" != " + data.attribute(m_attIndex).value_Renamed((int) m_splitPoint));
				}
			}
			else if (index == 0)
				text.Append(" <= " + m_splitPoint);
			else
				text.Append(" > " + m_splitPoint);
			
			return text.ToString();
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:31,代碼來源:BinC45Split.cs

示例10: handleEnumeratedAttribute

		/// <summary> Creates split on enumerated attribute.
		/// 
		/// </summary>
		/// <exception cref="Exception">if something goes wrong
		/// </exception>
		private void  handleEnumeratedAttribute(Instances trainInstances)
		{
			
			Distribution newDistribution, secondDistribution;
			int numAttValues;
			double currIG, currGR;
			Instance instance;
			int i;
			
			numAttValues = trainInstances.attribute(m_attIndex).numValues();
			newDistribution = new Distribution(numAttValues, trainInstances.numClasses());
			
			// Only Instances with known values are relevant.
			System.Collections.IEnumerator enu = trainInstances.enumerateInstances();
			//UPGRADE_TODO: Method 'java.util.Enumeration.hasMoreElements' was converted to 'System.Collections.IEnumerator.MoveNext' which has a different behavior. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1073_javautilEnumerationhasMoreElements'"
			while (enu.MoveNext())
			{
				//UPGRADE_TODO: Method 'java.util.Enumeration.nextElement' was converted to 'System.Collections.IEnumerator.Current' which has a different behavior. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1073_javautilEnumerationnextElement'"
				instance = (Instance) enu.Current;
				if (!instance.isMissing(m_attIndex))
				{
					//UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'"
					newDistribution.add((int) instance.value_Renamed(m_attIndex), instance);
				}
			}
			m_distribution = newDistribution;
			
			// For all values
			for (i = 0; i < numAttValues; i++)
			{
				
				if (Utils.grOrEq(newDistribution.perBag(i), m_minNoObj))
				{
					secondDistribution = new Distribution(newDistribution, i);
					
					// Check if minimum number of Instances in the two
					// subsets.
					if (secondDistribution.check(m_minNoObj))
					{
						m_numSubsets = 2;
						currIG = m_infoGainCrit.splitCritValue(secondDistribution, m_sumOfWeights);
						currGR = m_gainRatioCrit.splitCritValue(secondDistribution, m_sumOfWeights, currIG);
						if ((i == 0) || Utils.gr(currGR, m_gainRatio))
						{
							m_gainRatio = currGR;
							m_infoGain = currIG;
							m_splitPoint = (double) i;
							m_distribution = secondDistribution;
						}
					}
				}
			}
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:58,代碼來源:BinC45Split.cs

示例11: PerformTraining


//.........這裏部分代碼省略.........
                //((IBk)this.CurrentClassifier).setKNN((int)Parameters.ListDoubleValues.Get("numericUpDownKNN").Value);
                this.CurrentClassifier.buildClassifier(train);
            }
            #endregion
            #region Multilayer Perceptron
            else if (ClassifAlgoParams.Name == "Perceptron")
            {
                this.CurrentClassifier = new weka.classifiers.functions.MultilayerPerceptron();
                ((MultilayerPerceptron)this.CurrentClassifier).setMomentum((double)Parameters.ListDoubleValues.Get("numericUpDownMomentum").Value);
                ((MultilayerPerceptron)this.CurrentClassifier).setLearningRate((double)Parameters.ListDoubleValues.Get("numericUpDownLearningRate").Value);
                ((MultilayerPerceptron)this.CurrentClassifier).setSeed((int)Parameters.ListDoubleValues.Get("numericUpDownSeed").Value);
                ((MultilayerPerceptron)this.CurrentClassifier).setTrainingTime((int)Parameters.ListDoubleValues.Get("numericUpDownTrainingTime").Value);
                ((MultilayerPerceptron)this.CurrentClassifier).setNormalizeAttributes((bool)Parameters.ListCheckValues.Get("checkBoxNormAttribute").Value);
                ((MultilayerPerceptron)this.CurrentClassifier).setNormalizeNumericClass((bool)Parameters.ListCheckValues.Get("checkBoxNormNumericClasses").Value);
                this.CurrentClassifier.buildClassifier(train);
            }
            #endregion
            #region ZeroR
            else if (ClassifAlgoParams.Name == "ZeroR")
            {
                this.CurrentClassifier = new weka.classifiers.rules.OneR();
                this.CurrentClassifier.buildClassifier(train);
            }
            #endregion
            #region OneR
            else if (ClassifAlgoParams.Name == "OneR")
            {
                this.CurrentClassifier = new weka.classifiers.rules.OneR();
                ((OneR)this.CurrentClassifier).setMinBucketSize((int)Parameters.ListDoubleValues.Get("numericUpDownMinBucketSize").Value);
                this.CurrentClassifier.buildClassifier(train);
            }
            #endregion
            #region Naive Bayes
            else if (ClassifAlgoParams.Name == "NaiveBayes")
            {
                this.CurrentClassifier = new weka.classifiers.bayes.NaiveBayes();
                ((NaiveBayes)this.CurrentClassifier).setUseKernelEstimator((bool)Parameters.ListCheckValues.Get("checkBoxKernelEstimator").Value);
                this.CurrentClassifier.buildClassifier(train);
            }
            #endregion
            #region Logistic
            else if (ClassifAlgoParams.Name == "Logistic")
            {
                this.CurrentClassifier = new weka.classifiers.functions.Logistic();
                ((Logistic)this.CurrentClassifier).setUseConjugateGradientDescent((bool)Parameters.ListCheckValues.Get("checkBoxUseConjugateGradientDescent").Value);
                ((Logistic)this.CurrentClassifier).setRidge((double)Parameters.ListDoubleValues.Get("numericUpDownRidge").Value);
                this.CurrentClassifier.buildClassifier(train);
            }
            #endregion
            //weka.classifiers.functions.SMO
            //BayesNet

            #endregion

            if (TextBoxForFeedback != null)
            {
                TextBoxForFeedback.Clear();
                TextBoxForFeedback.AppendText(this.CurrentClassifier.ToString());
            }

            TextBoxForFeedback.AppendText("\n" + (InstancesList.numAttributes() - 1) + " attributes:\n\n");
            for (int IdxAttributes = 0; IdxAttributes < InstancesList.numAttributes() - 1; IdxAttributes++)
            {
                TextBoxForFeedback.AppendText(IdxAttributes + "\t: " + InstancesList.attribute(IdxAttributes).name() + "\n");
            }

            #region evaluation of the model and results display

            if ((WindowForClassificationParam.numericUpDownFoldNumber.Enabled) && (TextBoxForFeedback != null))
            {

                TextBoxForFeedback.AppendText("\n-----------------------------\nModel validation\n-----------------------------\n");
                ModelEvaluation = new weka.classifiers.Evaluation(InstancesList);
                ModelEvaluation.crossValidateModel(this.CurrentClassifier, InstancesList, (int)WindowForClassificationParam.numericUpDownFoldNumber.Value, new java.util.Random(1));
                TextBoxForFeedback.AppendText(ModelEvaluation.toSummaryString());
                TextBoxForFeedback.AppendText("\n-----------------------------\nConfusion Matrix:\n-----------------------------\n");
                double[][] ConfusionMatrix = ModelEvaluation.confusionMatrix();

                string NewLine = "";
                for (int i = 0; i < ConfusionMatrix[0].Length; i++)
                {
                    NewLine += "c" + i + "\t";
                }
                TextBoxForFeedback.AppendText(NewLine + "\n\n");

                for (int j = 0; j < ConfusionMatrix.Length; j++)
                {
                    NewLine = "";
                    for (int i = 0; i < ConfusionMatrix[0].Length; i++)
                    {
                        NewLine += ConfusionMatrix[j][i] + "\t";
                    }
                    // if
                    TextBoxForFeedback.AppendText(NewLine + "| c" + j + " <=> " + cGlobalInfo.ListCellularPhenotypes[j].Name + "\n");
                }
            }
            #endregion

            return this.CurrentClassifier;
        }
開發者ID:cyrenaique,項目名稱:HCSA,代碼行數:101,代碼來源:cMachineLearning.cs

示例12: EvaluteAndDisplayClusterer

        /// <summary>
        /// Evalute and display a WEKA clusterer
        /// </summary>
        /// <param name="SelectedClusterer">weka clusterer</param>
        /// <param name="InstancesList">list of instances for the validation</param>
        /// <param name="RichTextBoxToDisplayResults">Text box for the results (can be NULL)</param>
        /// <param name="PanelTodisplayGraphicalResults">Panel to display visual results if avalaible (can be NULL)</param>
        /// <returns></returns>
        public ClusterEvaluation EvaluteAndDisplayClusterer(RichTextBox RichTextBoxToDisplayResults,
                                                            Panel PanelTodisplayGraphicalResults, Instances ListInstanceForValid)
        {
            ClusterEvaluation eval = new ClusterEvaluation();
            eval.setClusterer(SelectedClusterer);
            eval.evaluateClusterer(ListInstanceForValid);

            if (RichTextBoxToDisplayResults != null)
            {

                if ((RichTextBoxToDisplayResults != null) && (eval.getNumClusters() > cGlobalInfo.ListCellularPhenotypes.Count))
                {
                    RichTextBoxToDisplayResults.Clear();
                    RichTextBoxToDisplayResults.AppendText("Error: " + eval.getNumClusters() + " clusters identifed.");
                    RichTextBoxToDisplayResults.AppendText("The maximum number of cluster is " + cGlobalInfo.ListCellularPhenotypes.Count + ".");
                    return null;

                }
                if (RichTextBoxToDisplayResults != null)
                {
                    RichTextBoxToDisplayResults.Clear();
                    RichTextBoxToDisplayResults.AppendText(eval.clusterResultsToString());
                }

                RichTextBoxToDisplayResults.AppendText("\n" + ListInstanceForValid.numAttributes() + " attributes:\n\n");
                for (int IdxAttributes = 0; IdxAttributes < ListInstanceForValid.numAttributes(); IdxAttributes++)
                {
                    RichTextBoxToDisplayResults.AppendText(IdxAttributes + "\t: " + ListInstanceForValid.attribute(IdxAttributes).name() + "\n");
                }
            }

            if (PanelTodisplayGraphicalResults != null) PanelTodisplayGraphicalResults.Controls.Clear();

            if ((PanelTodisplayGraphicalResults != null) && (SelectedClusterer.GetType().Name == "HierarchicalClusterer"))
            {
                Button ButtonToDisplayHierarchicalClustering = new Button();
                ButtonToDisplayHierarchicalClustering.Text = "Display Hierarchical Tree";
                ButtonToDisplayHierarchicalClustering.Width *= 2;
                ButtonToDisplayHierarchicalClustering.Location = new System.Drawing.Point((PanelTodisplayGraphicalResults.Width - ButtonToDisplayHierarchicalClustering.Width) / 2,
                    (PanelTodisplayGraphicalResults.Height - ButtonToDisplayHierarchicalClustering.Height) / 2);

                ButtonToDisplayHierarchicalClustering.Anchor = AnchorStyles.None;
                ButtonToDisplayHierarchicalClustering.Click += new EventHandler(ClickToDisplayHierarchicalTree);
                PanelTodisplayGraphicalResults.Controls.Add(ButtonToDisplayHierarchicalClustering);
            }

            return eval;
        }
開發者ID:cyrenaique,項目名稱:HCSA,代碼行數:56,代碼來源:cMachineLearning.cs

示例13: setInputFormat

        // ---- OPERATIONS ----
        ///    
        ///     <summary> * Sets the format of the input instances. If the filter is able to
        ///     * determine the output format before seeing any input instances, it
        ///     * does so here. This default implementation clears the output format
        ///     * and output queue, and the new batch flag is set. Overriders should
        ///     * call <code>super.setInputFormat(Instances)</code>
        ///     * </summary>
        ///     * <param name="instanceInfo"> an Instances object containing the input instance
        ///     * structure (any instances contained in the object are ignored - only the
        ///     * structure is required). </param>
        ///     * <returns> true if the outputFormat may be collected immediately </returns>
        ///     * <exception cref="Exception"> if the inputFormat can't be set successfully  </exception>
        ///     
        //JAVA TO VB & C# CONVERTER WARNING: Method 'throws' clauses are not available in .NET:
        //ORIGINAL LINE: public boolean setInputFormat(Instances instanceInfo) throws Exception
        public override bool setInputFormat(Instances instanceInfo)
        {
            base.setInputFormat(instanceInfo);

            for (int i = 0; i < instanceInfo.numAttributes(); ++i)
            {
                if (!instanceInfo.attribute(i).isNumeric())
                {
                    throw new UnsupportedAttributeTypeException("All attributes must be numeric");
                }
            }

            // Create the output buffer
            setOutputFormat();
            return true;
        }
開發者ID:wushian,項目名稱:MLEA,代碼行數:32,代碼來源:FourierTransform.cs

示例14: equalHeaders

		/// <summary> Checks if two headers are equivalent.
		/// 
		/// </summary>
		/// <param name="dataset">another dataset
		/// </param>
		/// <returns> true if the header of the given dataset is equivalent 
		/// to this header
		/// </returns>
		public virtual bool equalHeaders(Instances dataset)
		{
			
			// Check class and all attributes
			if (m_ClassIndex != dataset.m_ClassIndex)
			{
				return false;
			}
			if (m_Attributes.size() != dataset.m_Attributes.size())
			{
				return false;
			}
			for (int i = 0; i < m_Attributes.size(); i++)
			{
				if (!(attribute(i).Equals(dataset.attribute(i))))
				{
					return false;
				}
			}
			return true;
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:29,代碼來源:Instances.cs

示例15: mergeInstances

		/// <summary> Merges two sets of Instances together. The resulting set will have
		/// all the attributes of the first set plus all the attributes of the 
		/// second set. The number of instances in both sets must be the same.
		/// 
		/// </summary>
		/// <param name="first">the first set of Instances
		/// </param>
		/// <param name="second">the second set of Instances
		/// </param>
		/// <returns> the merged set of Instances
		/// </returns>
		/// <exception cref="IllegalArgumentException">if the datasets are not the same size
		/// </exception>
		public static Instances mergeInstances(Instances first, Instances second)
		{
			
			if (first.numInstances() != second.numInstances())
			{
				throw new System.ArgumentException("Instance sets must be of the same size");
			}
			
			// Create the vector of merged attributes
			FastVector newAttributes = new FastVector();
			for (int i = 0; i < first.numAttributes(); i++)
			{
				newAttributes.addElement(first.attribute(i));
			}
			for (int i = 0; i < second.numAttributes(); i++)
			{
				newAttributes.addElement(second.attribute(i));
			}
			
			// Create the set of Instances
			Instances merged = new Instances(first.relationName() + '_' + second.relationName(), newAttributes, first.numInstances());
			// Merge each instance
			for (int i = 0; i < first.numInstances(); i++)
			{
				merged.add(first.instance(i).mergeInstance(second.instance(i)));
			}
			return merged;
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:41,代碼來源:Instances.cs


注:本文中的weka.core.Instances.attribute方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。