當前位置: 首頁>>代碼示例>>C#>>正文


C# core.Instances類代碼示例

本文整理匯總了C#中weka.core.Instances的典型用法代碼示例。如果您正苦於以下問題:C# Instances類的具體用法?C# Instances怎麽用?C# Instances使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


Instances類屬於weka.core命名空間,在下文中一共展示了Instances類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。

示例1: Classify

        public static string Classify(bool useRubine, float duration, bool righthandedness, List<float> SpeakerAngles, PointCollection pointHist, StylusPointCollection S, List<List<int>> hist, List<List<int>> ihist)
        {
            // Convert all parameters to format used in GestureTests
            List<Vector2> InterpretedPoints = new List<Vector2>();
            List<Vector2> StylusPoints = new List<Vector2>();
            List<Vector2> VelocityHistory = new List<Vector2>();
            List<Vector2> InverseVelocityHistory = new List<Vector2>();
            foreach(Point P in pointHist)
                InterpretedPoints.Add(new Vector2((float)P.X,(float)P.Y));
            foreach(StylusPoint P in S)
                StylusPoints.Add(new Vector2((float)P.X,(float)P.Y));
            for (int i = 0; i < hist[0].Count; i++)
            {
                VelocityHistory.Add(new Vector2(hist[0][i], hist[1][i]));
                InverseVelocityHistory.Add(new Vector2(ihist[0][i], ihist[1][i]));
            }

            // Create a new Sample, compute the features, and classify
            GS = new GestureSample(GestureTests.Types.GestureType.unknown, righthandedness,duration,SpeakerAngles,InterpretedPoints,StylusPoints,VelocityHistory,InverseVelocityHistory);
            GS.ComputeFeatures(GestureFeatures.PointsStroke);

            if (useRubine)
                return EC.Recognizer.Classify(GS).ToString();
            WriteARFF();

            Instances test = new Instances(new java.io.FileReader("outfile.arff"));
            test.setClassIndex(0);

            double clsLabel = cls.classifyInstance(test.instance(0));
            test.instance(0).setClassValue(clsLabel);

            // Return the appropriate label
            return ((GestureType2D)((int)clsLabel+1)).ToString();
        }
開發者ID:ISUE,項目名稱:Multiwave,代碼行數:34,代碼來源:WekaHelper.cs

示例2: EndTrainingSession

        public void EndTrainingSession()
        {
            Stream s = new MemoryStream ();
            TextWriter tw = new StreamWriter (s);
            AbstractBasicTextVector.WriteInstancesArff (tw, vectors, "c45recommender", tags, results);
            tw.Flush ();
            s.Position = 0;
            Instances source = new Instances (new InputStreamReader (new InputStreamWrapper (s)));
            tw.Close ();
            s.Close ();

            Instances[] derived = new Instances[this.not];
            classifiers = new AbstractClassifier[this.not];
            int[] args = new int[this.not - 1];
            int l = source.numAttributes () - this.not;
            for (int i = 0; i < this.not-1; i++) {
                args [i] = i + l + 1;
            }
            for (int i = 0; i < this.not; i++) {
                Remove rem = new Remove ();
                rem.setAttributeIndicesArray (args);
                rem.setInputFormat (source);
                derived [i] = Filter.useFilter (source, rem);
                classifiers [i] = GenerateClassifier ();
                derived [i].setClassIndex (derived [i].numAttributes () - 1);
                classifiers [i].buildClassifier (derived [i]);
                if (i < this.not - 1) {
                    args [i] = l + i;
                }
            }
            datasets = derived;
        }
開發者ID:KommuSoft,項目名稱:MLTag,代碼行數:32,代碼來源:AbstractCustomVectorRecommender.cs

示例3: setInputFormat

		/// <summary> Sets the format of the input instances.
		/// 
		/// </summary>
		/// <param name="instanceInfo">an Instances object containing the input instance
		/// structure (any instances contained in the object are ignored - only the
		/// structure is required).
		/// </param>
		/// <returns> true if the outputFormat may be collected immediately
		/// </returns>
		/// <exception cref="Exception">if the inputFormat can't be set successfully 
		/// </exception>
		public override bool setInputFormat(Instances instanceInfo)
		{
			
			base.setInputFormat(instanceInfo);
			m_removeFilter = null;
			return false;
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:18,代碼來源:RemoveUseless.cs

示例4: EvaluateIncrementalBatches

        public void EvaluateIncrementalBatches(int batchSize)
        {
            //Randomize Filter
            Randomize randomizeFilter = new Randomize();
            randomizeFilter.setInputFormat(this.data);

     

            //RemoveRange Filter

            //number of classes
            int numClasses = this.data.attribute(this.data.numAttributes() - 1).numValues();
            Instances[] classInstances = new Instances[numClasses];
            for (int i = 1; (i <= numClasses); i++)
            {
                //RemoveWithValues Filter
                RemoveWithValues removeValuesFilter = new RemoveWithValues();     
                removeValuesFilter.setInputFormat(this.data);
               // removeValuesFilter.set_AttributeIndex("last");
               // removeValuesFilter.
                removeValuesFilter.set_MatchMissingValues(false);

                
                removeValuesFilter.set_NominalIndices("1-1");
                classInstances[i] = Filter.useFilter(this.data, removeValuesFilter);
            }
           
        }
開發者ID:intille,項目名稱:mitessoftware,代碼行數:28,代碼來源:Evaluator.cs

示例5: buildClassifier

		/// <summary> Generates the classifier.
		/// 
		/// </summary>
		/// <param name="instances">set of instances serving as training data 
		/// </param>
		/// <exception cref="Exception">if the classifier has not been generated successfully
		/// </exception>
		public override void  buildClassifier(Instances instances)
		{
			
			double sumOfWeights = 0;
			
			m_Class = instances.classAttribute();
			m_ClassValue = 0;
			switch (instances.classAttribute().type())
			{
				
				case weka.core.Attribute.NUMERIC: 
					m_Counts = null;
					break;

                case weka.core.Attribute.NOMINAL: 
					m_Counts = new double[instances.numClasses()];
					for (int i = 0; i < m_Counts.Length; i++)
					{
						m_Counts[i] = 1;
					}
					sumOfWeights = instances.numClasses();
					break;
				
				default: 
					throw new System.Exception("ZeroR can only handle nominal and numeric class" + " attributes.");
				
			}
			System.Collections.IEnumerator enu = instances.enumerateInstances();
			//UPGRADE_TODO: Method 'java.util.Enumeration.hasMoreElements' was converted to 'System.Collections.IEnumerator.MoveNext' which has a different behavior. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1073_javautilEnumerationhasMoreElements'"
			while (enu.MoveNext())
			{
				//UPGRADE_TODO: Method 'java.util.Enumeration.nextElement' was converted to 'System.Collections.IEnumerator.Current' which has a different behavior. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1073_javautilEnumerationnextElement'"
				Instance instance = (Instance) enu.Current;
				if (!instance.classIsMissing())
				{
					if (instances.classAttribute().Nominal)
					{
						//UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'"
						m_Counts[(int) instance.classValue()] += instance.weight();
					}
					else
					{
						m_ClassValue += instance.weight() * instance.classValue();
					}
					sumOfWeights += instance.weight();
				}
			}
			if (instances.classAttribute().Numeric)
			{
				if (Utils.gr(sumOfWeights, 0))
				{
					m_ClassValue /= sumOfWeights;
				}
			}
			else
			{
				m_ClassValue = Utils.maxIndex(m_Counts);
				Utils.normalize(m_Counts, sumOfWeights);
			}
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:67,代碼來源:ZeroR.cs

示例6: Build

 public void Build()
 {
     this.featureIndex = new int[this.features.Count];
     for(int i=0;(i< this.features.Count);i++)
     {
         for (int j = 0; (j < Extractor.ArffAttributeLabels.Length); j++)
             if (((string)this.features[i]).Equals(Extractor.ArffAttributeLabels[j]))
             {
                 this.featureIndex[i] = j;
                 break;
             }
     }
     instances = new Instances(new StreamReader(this.filename));
     instances.Class = instances.attribute(this.features.Count);
     classifier = new J48();
     classifier.buildClassifier(instances);
     
     //setup the feature vector 
     //fvWekaAttributes = new FastVector(this.features.Count + 1);
     //for (i = 0; (i < this.features.Count); i++)
     //    fvWekaAttributes.addElement(new weka.core.Attribute(this.features[i]));
     
     
     //Setup the class attribute
     //FastVector fvClassVal = new FastVector();
     //for (i = 0; (i < this.classes.Count); i++)           
      //   fvClassVal.addElement(this.classes[i]);            
     //weka.core.Attribute ClassAttribute = new weka.core.Attribute("activity", fvClassVal);
 }
開發者ID:intille,項目名稱:mitessoftware,代碼行數:29,代碼來源:DTClassifier.cs

示例7: setInputFormat

		/// <summary> Sets the format of the input instances.
		/// 
		/// </summary>
		/// <param name="instanceInfo">an Instances object containing the input 
		/// instance structure (any instances contained in the object are 
		/// ignored - only the structure is required).
		/// </param>
		/// <returns> true if the outputFormat may be collected immediately
		/// </returns>
		/// <exception cref="Exception">if the input format can't be set 
		/// successfully
		/// </exception>
		public virtual bool setInputFormat(Instances instanceInfo)
		{
			
			base.setInputFormat(instanceInfo);
			setOutputFormat(instanceInfo);
			m_ModesAndMeans = null;
			return true;
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:20,代碼來源:ReplaceMissingValues.cs

示例8: parse

        public ArffStore parse()
        {
            ArffStore arffStore = new ArffStore();
            instances = new Instances(new StreamReader(this.filename));
            
            //foreach (weka.core.Attribute attribute in instances.enumerateAttributes())
             //   arffStore.Features.Add(attribute.name);

            return arffStore;
           
        }
開發者ID:intille,項目名稱:mitessoftware,代碼行數:11,代碼來源:ArffParser.cs

示例9: setInputFormat

		/// <summary> Sets the format of the input instances.
		/// 
		/// </summary>
		/// <param name="instanceInfo">an Instances object containing the input 
		/// instance structure (any instances contained in the object are 
		/// ignored - only the structure is required).
		/// </param>
		/// <returns> true if the outputFormat may be collected immediately
		/// </returns>
		/// <exception cref="Exception">if the input format can't be set 
		/// successfully
		/// </exception>
		public override bool setInputFormat(Instances instanceInfo)
		{
			
			base.setInputFormat(instanceInfo);
			
			m_Columns.Upper = instanceInfo.numAttributes() - 1;
			
			setOutputFormat();
			m_Indices = null;
			return true;
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:23,代碼來源:NominalToBinary.cs

示例10: classifyTest

    // Test the classification result of each map that a user played,
    // with the data available as if they were playing through it
    public static void classifyTest(String dataString, String playerID)
    {
        String results = "";
        try {
            java.io.StringReader stringReader = new java.io.StringReader(dataString);
            java.io.BufferedReader buffReader = new java.io.BufferedReader(stringReader);

            /* NOTE THAT FOR NAIVE BAYES ALL WEIGHTS CAN BE = 1*/
            //weka.core.converters.ConverterUtils.DataSource source = new weka.core.converters.ConverterUtils.DataSource("iris.arff");
            weka.core.Instances data = new weka.core.Instances(buffReader); //source.getDataSet();
            // setting class attribute if the data format does not provide this information
            // For example, the XRFF format saves the class attribute information as well
            if (data.classIndex() == -1)
                data.setClassIndex(data.numAttributes() - 1);

            weka.classifiers.Classifier cl;
            for (int i = 3; i < data.numInstances(); i++) {
                cl = new weka.classifiers.bayes.NaiveBayes();
                //cl = new weka.classifiers.trees.J48();
                //cl = new weka.classifiers.lazy.IB1();
                //cl = new weka.classifiers.functions.MultilayerPerceptron();
                ((weka.classifiers.functions.MultilayerPerceptron)cl).setHiddenLayers("12");

                weka.core.Instances subset = new weka.core.Instances(data,0,i);
                cl.buildClassifier(subset);

                weka.classifiers.Evaluation eval = new weka.classifiers.Evaluation(subset);
         		eval.crossValidateModel(cl, subset, 3, new java.util.Random(1));
                results = results + eval.pctCorrect(); // For accuracy measurement
                /* For Mathews Correlation Coefficient */
                //double TP = eval.numTruePositives(1);
                //double FP = eval.numFalsePositives(1);
                //double TN = eval.numTrueNegatives(1);
                //double FN = eval.numFalseNegatives(1);
                //double correlationCoeff = ((TP*TN)-(FP*FN))/Math.Sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN));
                //results = results + correlationCoeff;
                if (i != data.numInstances()-1)
                    results = results + ", ";
                if(i == data.numInstances()-1)
                    Debug.Log("Player: " + playerID + ", Num Maps: " + data.numInstances() + ", AUC: " + eval.areaUnderROC(1));
            }
        } catch (java.lang.Exception ex)
        {
            Debug.LogError(ex.getMessage());
        }
        // Write values to file for a matlab read
        // For accuracy
         	StreamWriter writer = new StreamWriter("DataForMatlab/"+playerID+"_CrossFoldValidations_NeuralNet.txt");

        //StreamWriter writer = new StreamWriter("DataForMatlab/"+playerID+"_CrossFoldCorrCoeff.txt"); // For mathews cc
        writer.WriteLine(results);
        writer.Close();
        Debug.Log(playerID + " has been written to file");
    }
開發者ID:AlexanderMazaletskiy,項目名稱:PCG-Angry-Bots,代碼行數:56,代碼來源:wekaAttributeSelectionCounter.cs

示例11: BinC45ModelSelection

        public BinC45ModelSelection(XmlNode model,Instances allData)
        {

            foreach (XmlAttribute xAttribute in model.Attributes)
            {
                if (xAttribute.Name == Constants.MIN_NO_OBJ_ATTRIBUTE)
                    this.m_minNoObj = Convert.ToInt32(xAttribute.Value);
            }

            m_allData = allData;
                    
        }
開發者ID:intille,項目名稱:mitessoftware,代碼行數:12,代碼來源:BinC45ModelSelection.cs

示例12: Evaluator

        public Evaluator(string arffFile)
        {

            this.data = new Instances(new StreamReader(arffFile));
            this.data.ClassIndex = this.data.numAttributes() - 1;
            this.numExamples = this.data.m_Instances.size();
            this.classCount = this.data.attribute(this.data.numAttributes() - 1).numValues();




            // this.trainingSizeMatrix=new double[
        }
開發者ID:intille,項目名稱:mitessoftware,代碼行數:13,代碼來源:Evaluator.cs

示例13: VectorClassif

 public VectorClassif(int nbTags)
 {
     tagsNb = nbTags;
     ArrayList nomi = new ArrayList();
     nomi.add("0");
     nomi.add("1");
     ArrayList attr = new ArrayList();
     weka.core.Attribute stringAttr = new weka.core.Attribute("todoString", (List)null);
     attr.add(stringAttr);
     for (int i = 1; i <= nbTags; i++) {
         attr.add(new weka.core.Attribute("label" + i, nomi));
     }
     oDataSet = new Instances("Todo-Instances", attr, 500);
 }
開發者ID:KommuSoft,項目名稱:MLTag,代碼行數:14,代碼來源:VectorClassif.cs

示例14: EndTrainingSession

 public void EndTrainingSession()
 {
     Console.WriteLine("End");
     stv = new StringToWordVector();
     stv.setAttributeNamePrefix("#");
     stv.setLowerCaseTokens(true);
     stv.setOutputWordCounts(true);
     stv.setInputFormat(oDataSet);
     stv.setStemmer(new weka.core.stemmers.LovinsStemmer());
     stv.setIDFTransform(true);
     dataSet = Filter.useFilter(oDataSet, stv);
     MultiLabelInstances mli = new MultiLabelInstances(dataSet, loadLabelsMeta(dataSet, tagsNb));
     BinaryRelevance br = new mulan.classifier.transformation.BinaryRelevance(new NaiveBayes());
     lps = new mulan.classifier.meta.RAkEL(br);
     br.setDebug(true);
     lps.setDebug(true);
     lps.build(mli);
 }
開發者ID:KommuSoft,項目名稱:MLTag,代碼行數:18,代碼來源:VectorClassif.cs

示例15: Distribution

		/// <summary> Creates a distribution with only one bag according
		/// to instances in source.
		/// 
		/// </summary>
		/// <exception cref="Exception">if something goes wrong
		/// </exception>
		public Distribution(Instances source)
		{
			
			m_perClassPerBag = new double[1][];
			for (int i = 0; i < 1; i++)
			{
				m_perClassPerBag[i] = new double[0];
			}
			m_perBag = new double[1];
			totaL = 0;
			m_perClass = new double[source.numClasses()];
			m_perClassPerBag[0] = new double[source.numClasses()];
			System.Collections.IEnumerator enu = source.enumerateInstances();
			//UPGRADE_TODO: Method 'java.util.Enumeration.hasMoreElements' was converted to 'System.Collections.IEnumerator.MoveNext' which has a different behavior. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1073_javautilEnumerationhasMoreElements'"
			while (enu.MoveNext())
			{
				//UPGRADE_TODO: Method 'java.util.Enumeration.nextElement' was converted to 'System.Collections.IEnumerator.Current' which has a different behavior. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1073_javautilEnumerationnextElement'"
				add(0, (Instance) enu.Current);
			}
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:26,代碼來源:Distribution.cs


注:本文中的weka.core.Instances類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。