當前位置: 首頁>>代碼示例>>C#>>正文


C# Instances.instance方法代碼示例

本文整理匯總了C#中weka.core.Instances.instance方法的典型用法代碼示例。如果您正苦於以下問題:C# Instances.instance方法的具體用法?C# Instances.instance怎麽用?C# Instances.instance使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在weka.core.Instances的用法示例。


在下文中一共展示了Instances.instance方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。

示例1: Classify

        public static string Classify(bool useRubine, float duration, bool righthandedness, List<float> SpeakerAngles, PointCollection pointHist, StylusPointCollection S, List<List<int>> hist, List<List<int>> ihist)
        {
            // Convert all parameters to format used in GestureTests
            List<Vector2> InterpretedPoints = new List<Vector2>();
            List<Vector2> StylusPoints = new List<Vector2>();
            List<Vector2> VelocityHistory = new List<Vector2>();
            List<Vector2> InverseVelocityHistory = new List<Vector2>();
            foreach(Point P in pointHist)
                InterpretedPoints.Add(new Vector2((float)P.X,(float)P.Y));
            foreach(StylusPoint P in S)
                StylusPoints.Add(new Vector2((float)P.X,(float)P.Y));
            for (int i = 0; i < hist[0].Count; i++)
            {
                VelocityHistory.Add(new Vector2(hist[0][i], hist[1][i]));
                InverseVelocityHistory.Add(new Vector2(ihist[0][i], ihist[1][i]));
            }

            // Create a new Sample, compute the features, and classify
            GS = new GestureSample(GestureTests.Types.GestureType.unknown, righthandedness,duration,SpeakerAngles,InterpretedPoints,StylusPoints,VelocityHistory,InverseVelocityHistory);
            GS.ComputeFeatures(GestureFeatures.PointsStroke);

            if (useRubine)
                return EC.Recognizer.Classify(GS).ToString();
            WriteARFF();

            Instances test = new Instances(new java.io.FileReader("outfile.arff"));
            test.setClassIndex(0);

            double clsLabel = cls.classifyInstance(test.instance(0));
            test.instance(0).setClassValue(clsLabel);

            // Return the appropriate label
            return ((GestureType2D)((int)clsLabel+1)).ToString();
        }
開發者ID:ISUE,項目名稱:Multiwave,代碼行數:34,代碼來源:WekaHelper.cs

示例2: Main

  public static void Main(string[] args) {
    try {
      int runs = 1;
      string algo = "";
      string data = "";
      if(args.Length>0) runs = Convert.ToInt32(args[0]);
      if(args.Length>1) algo = args[1];
      if(args.Length>2) data = args[2];

      Stopwatch read = new Stopwatch(), 
        build = new Stopwatch(), 
        classify = new Stopwatch();
      for (int cnt=0; cnt<runs; cnt++) {
        read.Start();
        Instances train = new Instances(new java.io.FileReader(data+"train.arff"));
        train.setClassIndex(train.numAttributes() - 1);
        Instances test = new Instances(new java.io.FileReader(data+"test.arff"));
        test.setClassIndex(test.numAttributes() - 1);
        read.Stop();

        Classifier[] clList = {
          new weka.classifiers.bayes.NaiveBayes(),
          new weka.classifiers.trees.RandomForest(),
          new weka.classifiers.trees.J48(),
          new weka.classifiers.functions.MultilayerPerceptron(),
          new weka.classifiers.rules.ConjunctiveRule(),
          new weka.classifiers.functions.SMO()
        };

        build.Start();
        foreach (Classifier classifier in clList) {
          if(algo.Equals("") || algo.Equals("All") || classifier.getClass().getSimpleName().Equals(algo))
              classifier.buildClassifier(train);
        }
        build.Stop();

        classify.Start();
        foreach (Classifier classifier in clList) {
          if(algo.Equals("") || algo.Equals("All") || classifier.getClass().getSimpleName().Equals(algo)) {
              int numCorrect = 0;
              for (int i = 0; i < test.numInstances(); i++)
              {
                  if (classifier.classifyInstance(test.instance(i)) == test.instance(i).classValue())
                      numCorrect++;
              }
              //Console.Write(classifier.getClass().getSimpleName() + "\t" + numCorrect + " out of " + test.numInstances() + " correct (" +(100.0 * numCorrect / test.numInstances()) + "%)");
          }
        }
        classify.Stop();
      }
      Console.WriteLine("{\""+ algo + "\"," + read.ElapsedMilliseconds + "," + build.ElapsedMilliseconds + "," + classify.ElapsedMilliseconds + "," + (read.ElapsedMilliseconds+build.ElapsedMilliseconds+classify.ElapsedMilliseconds)+"};");
      if(args.Length>3) Console.ReadLine();
    } catch (java.lang.Exception e){
      e.printStackTrace();
    }
  }
開發者ID:HairyFotr,項目名稱:Weka-on-.NET,代碼行數:56,代碼來源:Program.cs

示例3: evaluateModel


//.........這裏部分代碼省略.........
                catch (Exception e)
                {
                    Console.WriteLine("Failed to deserialize. Reason: " + e.Message);
                    throw;
                }
                finally
                {
                    objectStream.Close();
                    //fs.Close();
                }


				objectInputStream.Close();
			}
			
			// backup of fully setup classifier for cross-validation
			classifierBackup = Classifier.makeCopy(classifier);
			
			// Build the classifier if no object file provided
			if ((classifier is UpdateableClassifier) && (testFileName.Length != 0) && (costMatrix == null) && (trainFileName.Length != 0))
			{
				
				// Build classifier incrementally
				trainingEvaluation.Priors = train;
				testingEvaluation.Priors = train;
				trainTimeStart = (System.DateTime.Now.Ticks - 621355968000000000) / 10000;
				if (objectInputFileName.Length == 0)
				{
					classifier.buildClassifier(train);
				}
				while (train.readInstance(trainReader))
				{
					
					trainingEvaluation.updatePriors(train.instance(0));
					testingEvaluation.updatePriors(train.instance(0));
					((UpdateableClassifier) classifier).updateClassifier(train.instance(0));
					train.delete(0);
				}
				trainTimeElapsed = (System.DateTime.Now.Ticks - 621355968000000000) / 10000 - trainTimeStart;
				trainReader.Close();
			}
			else if (objectInputFileName.Length == 0)
			{
				
				// Build classifier in one go
				tempTrain = new Instances(train);
				trainingEvaluation.Priors = tempTrain;
				testingEvaluation.Priors = tempTrain;
				trainTimeStart = (System.DateTime.Now.Ticks - 621355968000000000) / 10000;
				classifier.buildClassifier(tempTrain);
				trainTimeElapsed = (System.DateTime.Now.Ticks - 621355968000000000) / 10000 - trainTimeStart;
			}
			
			// Save the classifier if an object output file is provided
			if (objectOutputFileName.Length != 0)
			{
				//UPGRADE_TODO: Constructor 'java.io.FileOutputStream.FileOutputStream' was converted to 'System.IO.FileStream.FileStream' which has a different behavior. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1073_javaioFileOutputStreamFileOutputStream_javalangString'"
				System.IO.Stream os = new System.IO.FileStream(objectOutputFileName, System.IO.FileMode.Create);
				if (objectOutputFileName.EndsWith(".gz"))
				{
					//UPGRADE_ISSUE: Constructor 'java.util.zip.GZIPOutputStream.GZIPOutputStream' was not converted. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1000_javautilzipGZIPOutputStream'"
					os = new ICSharpCode.SharpZipLib.GZip.GZipOutputStream(os);
				}
				//UPGRADE_TODO: Class 'java.io.ObjectOutputStream' was converted to 'System.IO.BinaryWriter' which has a different behavior. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1073_javaioObjectOutputStream'"
				System.IO.BinaryWriter objectOutputStream = new System.IO.BinaryWriter(os);
				//UPGRADE_TODO: Method 'java.io.ObjectOutputStream.writeObject' was converted to 'SupportClass.Serialize' which has a different behavior. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1073_javaioObjectOutputStreamwriteObject_javalangObject'"
開發者ID:intille,項目名稱:mitessoftware,代碼行數:67,代碼來源:Evaluation.cs

示例4: toPrintClassifications

		/// <summary> Prints the predictions for the given dataset into a String variable.
		/// 
		/// </summary>
		/// <param name="classifier		the">classifier to use
		/// </param>
		/// <param name="train		the">training data
		/// </param>
		/// <param name="testFileName	the">name of the test file
		/// </param>
		/// <param name="classIndex		the">class index
		/// </param>
		/// <param name="attributesToOutput	the">indices of the attributes to output
		/// </param>
		/// <returns>			the generated predictions for the attribute range
		/// </returns>
		/// <throws>  Exception 		if test file cannot be opened </throws>
		protected internal static System.String toPrintClassifications(Classifier classifier, Instances train, System.String testFileName, int classIndex, Range attributesToOutput)
		{
			
			System.Text.StringBuilder text = new System.Text.StringBuilder();
			if (testFileName.Length != 0)
			{
				System.IO.StreamReader testReader = null;
				try
				{
					//UPGRADE_TODO: The differences in the expected value  of parameters for constructor 'java.io.BufferedReader.BufferedReader'  may cause compilation errors.  "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1092'"
					//UPGRADE_WARNING: At least one expression was used more than once in the target code. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1181'"
					//UPGRADE_TODO: Constructor 'java.io.FileReader.FileReader' was converted to 'System.IO.StreamReader' which has a different behavior. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1073'"
					testReader = new System.IO.StreamReader(new System.IO.StreamReader(testFileName, System.Text.Encoding.Default).BaseStream, new System.IO.StreamReader(testFileName, System.Text.Encoding.Default).CurrentEncoding);
				}
				catch (System.Exception e)
				{
					//UPGRADE_TODO: The equivalent in .NET for method 'java.lang.Throwable.getMessage' may return a different value. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1043'"
					throw new System.Exception("Can't open file " + e.Message + '.');
				}
				Instances test = new Instances(testReader, 1);
				if (classIndex != - 1)
				{
					test.ClassIndex = classIndex - 1;
				}
				else
				{
					test.ClassIndex = test.numAttributes() - 1;
				}
				int i = 0;
				while (test.readInstance(testReader))
				{
					Instance instance = test.instance(0);
					Instance withMissing = (Instance) instance.copy();
					withMissing.Dataset = test;
					double predValue = ((Classifier) classifier).classifyInstance(withMissing);
					if (test.classAttribute().Numeric)
					{
						if (Instance.isMissingValue(predValue))
						{
							text.Append(i + " missing ");
						}
						else
						{
							text.Append(i + " " + predValue + " ");
						}
						if (instance.classIsMissing())
						{
							text.Append("missing");
						}
						else
						{
							text.Append(instance.classValue());
						}
						text.Append(" " + attributeValuesString(withMissing, attributesToOutput) + "\n");
					}
					else
					{
						if (Instance.isMissingValue(predValue))
						{
							text.Append(i + " missing ");
						}
						else
						{
							//UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'"
							text.Append(i + " " + test.classAttribute().value_Renamed((int) predValue) + " ");
						}
						if (Instance.isMissingValue(predValue))
						{
							text.Append("missing ");
						}
						else
						{
							//UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'"
							text.Append(classifier.distributionForInstance(withMissing)[(int) predValue] + " ");
						}
						text.Append(instance.toString(instance.classIndex()) + " " + attributeValuesString(withMissing, attributesToOutput) + "\n");
					}
					test.delete(0);
					i++;
				}
				testReader.Close();
			}
			return text.ToString();
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:100,代碼來源:Evaluation.cs

示例5: resetDistribution

		/// <summary> Sets distribution associated with model.</summary>
		public override void  resetDistribution(Instances data)
		{
			
			Instances insts = new Instances(data, data.numInstances());
			for (int i = 0; i < data.numInstances(); i++)
			{
				if (whichSubset(data.instance(i)) > - 1)
				{
					insts.add(data.instance(i));
				}
			}
			Distribution newD = new Distribution(insts, this);
			newD.addInstWithUnknown(data, m_attIndex);
			m_distribution = newD;
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:16,代碼來源:C45Split.cs

示例6: handleNumericAttribute

		/// <summary> Creates split on numeric attribute.
		/// 
		/// </summary>
		/// <exception cref="Exception">if something goes wrong
		/// </exception>
		private void  handleNumericAttribute(Instances trainInstances)
		{
			
			int firstMiss;
			int next = 1;
			int last = 0;
			int splitIndex = - 1;
			double currentInfoGain;
			double defaultEnt;
			double minSplit;
			Instance instance;
			int i;
			
			// Current attribute is a numeric attribute.
			m_distribution = new Distribution(2, trainInstances.numClasses());
			
			// Only Instances with known values are relevant.
			System.Collections.IEnumerator enu = trainInstances.enumerateInstances();
			i = 0;
			//UPGRADE_TODO: Method 'java.util.Enumeration.hasMoreElements' was converted to 'System.Collections.IEnumerator.MoveNext' which has a different behavior. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1073_javautilEnumerationhasMoreElements'"
			while (enu.MoveNext())
			{
				//UPGRADE_TODO: Method 'java.util.Enumeration.nextElement' was converted to 'System.Collections.IEnumerator.Current' which has a different behavior. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1073_javautilEnumerationnextElement'"
				instance = (Instance) enu.Current;
				if (instance.isMissing(m_attIndex))
					break;
				m_distribution.add(1, instance);
				i++;
			}
			firstMiss = i;
			
			// Compute minimum number of Instances required in each
			// subset.
			minSplit = 0.1 * (m_distribution.total()) / ((double) trainInstances.numClasses());
			if (Utils.smOrEq(minSplit, m_minNoObj))
				minSplit = m_minNoObj;
			else if (Utils.gr(minSplit, 25))
				minSplit = 25;
			
			// Enough Instances with known values?
			if (Utils.sm((double) firstMiss, 2 * minSplit))
				return ;
			
			// Compute values of criteria for all possible split
			// indices.
			defaultEnt = infoGainCrit.oldEnt(m_distribution);
			while (next < firstMiss)
			{
				
				if (trainInstances.instance(next - 1).value_Renamed(m_attIndex) + 1e-5 < trainInstances.instance(next).value_Renamed(m_attIndex))
				{
					
					// Move class values for all Instances up to next 
					// possible split point.
					m_distribution.shiftRange(1, 0, trainInstances, last, next);
					
					// Check if enough Instances in each subset and compute
					// values for criteria.
					if (Utils.grOrEq(m_distribution.perBag(0), minSplit) && Utils.grOrEq(m_distribution.perBag(1), minSplit))
					{
						currentInfoGain = infoGainCrit.splitCritValue(m_distribution, m_sumOfWeights, defaultEnt);
						if (Utils.gr(currentInfoGain, m_infoGain))
						{
							m_infoGain = currentInfoGain;
							splitIndex = next - 1;
						}
						m_index++;
					}
					last = next;
				}
				next++;
			}
			
			// Was there any useful split?
			if (m_index == 0)
				return ;
			
			// Compute modified information gain for best split.
			m_infoGain = m_infoGain - (Utils.log2(m_index) / m_sumOfWeights);
			if (Utils.smOrEq(m_infoGain, 0))
				return ;
			
			// Set instance variables' values to values for
			// best split.
			m_numSubsets = 2;
			m_splitPoint = (trainInstances.instance(splitIndex + 1).value_Renamed(m_attIndex) + trainInstances.instance(splitIndex).value_Renamed(m_attIndex)) / 2;
			
			// In case we have a numerical precision problem we need to choose the
			// smaller value
			if (m_splitPoint == trainInstances.instance(splitIndex + 1).value_Renamed(m_attIndex))
			{
				m_splitPoint = trainInstances.instance(splitIndex).value_Renamed(m_attIndex);
			}
			
			// Restore distributioN for best split.
//.........這裏部分代碼省略.........
開發者ID:intille,項目名稱:mitessoftware,代碼行數:101,代碼來源:C45Split.cs

示例7: buildClassifier

		public override void  buildClassifier(Instances insts)
		{
			
			if (insts.checkForStringAttributes())
			{
				throw new Exception("Cannot handle string attributes!");
			}
			if (insts.numClasses() > 2)
			{
				throw new System.Exception("Can only handle two-class datasets!");
			}
			if (insts.classAttribute().Numeric)
			{
				throw new Exception("Can't handle a numeric class!");
			}
			
			// Filter data
			m_Train = new Instances(insts);
			m_Train.deleteWithMissingClass();
			m_ReplaceMissingValues = new ReplaceMissingValues();
			m_ReplaceMissingValues.setInputFormat(m_Train);
			m_Train = Filter.useFilter(m_Train, m_ReplaceMissingValues);
			
			m_NominalToBinary = new NominalToBinary();
			m_NominalToBinary.setInputFormat(m_Train);
			m_Train = Filter.useFilter(m_Train, m_NominalToBinary);
			
			/** Randomize training data */
			//UPGRADE_TODO: The differences in the expected value  of parameters for constructor 'java.util.Random.Random'  may cause compilation errors.  "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1092'"
			m_Train.randomize(new System.Random((System.Int32) m_Seed));
			
			/** Make space to store perceptrons */
			m_Additions = new int[m_MaxK + 1];
			m_IsAddition = new bool[m_MaxK + 1];
			m_Weights = new int[m_MaxK + 1];
			
			/** Compute perceptrons */
			m_K = 0;
			for (int it = 0; it < m_NumIterations; it++)
			{
				for (int i = 0; i < m_Train.numInstances(); i++)
				{
					Instance inst = m_Train.instance(i);
					if (!inst.classIsMissing())
					{
						int prediction = makePrediction(m_K, inst);
						//UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'"
						int classValue = (int) inst.classValue();
						if (prediction == classValue)
						{
							m_Weights[m_K]++;
						}
						else
						{
							m_IsAddition[m_K] = (classValue == 1);
							m_Additions[m_K] = i;
							m_K++;
							m_Weights[m_K]++;
						}
						if (m_K == m_MaxK)
						{
							//UPGRADE_NOTE: Labeled break statement was changed to a goto statement. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1012'"
							goto out_brk;
						}
					}
				}
			}
			//UPGRADE_NOTE: Label 'out_brk' was added. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1011'"

out_brk: ;
			
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:72,代碼來源:VotedPerceptron.cs

示例8: shiftRange

		/// <summary> Shifts all instances in given range from one bag to another one.
		/// 
		/// </summary>
		/// <exception cref="Exception">if something goes wrong
		/// </exception>
		public void  shiftRange(int from, int to, Instances source, int startIndex, int lastPlusOne)
		{
			
			int classIndex;
			double weight;
			Instance instance;
			int i;
			
			for (i = startIndex; i < lastPlusOne; i++)
			{
				instance = (Instance) source.instance(i);
				//UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'"
				classIndex = (int) instance.classValue();
				weight = instance.weight();
				m_perClassPerBag[from][classIndex] -= weight;
				m_perClassPerBag[to][classIndex] += weight;
				m_perBag[from] -= weight;
				m_perBag[to] += weight;
			}
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:25,代碼來源:Distribution.cs

示例9: mergeInstances

		/// <summary> Merges two sets of Instances together. The resulting set will have
		/// all the attributes of the first set plus all the attributes of the 
		/// second set. The number of instances in both sets must be the same.
		/// 
		/// </summary>
		/// <param name="first">the first set of Instances
		/// </param>
		/// <param name="second">the second set of Instances
		/// </param>
		/// <returns> the merged set of Instances
		/// </returns>
		/// <exception cref="IllegalArgumentException">if the datasets are not the same size
		/// </exception>
		public static Instances mergeInstances(Instances first, Instances second)
		{
			
			if (first.numInstances() != second.numInstances())
			{
				throw new System.ArgumentException("Instance sets must be of the same size");
			}
			
			// Create the vector of merged attributes
			FastVector newAttributes = new FastVector();
			for (int i = 0; i < first.numAttributes(); i++)
			{
				newAttributes.addElement(first.attribute(i));
			}
			for (int i = 0; i < second.numAttributes(); i++)
			{
				newAttributes.addElement(second.attribute(i));
			}
			
			// Create the set of Instances
			Instances merged = new Instances(first.relationName() + '_' + second.relationName(), newAttributes, first.numInstances());
			// Merge each instance
			for (int i = 0; i < first.numInstances(); i++)
			{
				merged.add(first.instance(i).mergeInstance(second.instance(i)));
			}
			return merged;
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:41,代碼來源:Instances.cs

示例10: delRange

		/// <summary> Deletes all instances in given range from given bag.
		/// 
		/// </summary>
		/// <exception cref="Exception">if something goes wrong
		/// </exception>
		public void  delRange(int bagIndex, Instances source, int startIndex, int lastPlusOne)
		{
			
			double sumOfWeights = 0;
			int classIndex;
			Instance instance;
			int i;
			
			for (i = startIndex; i < lastPlusOne; i++)
			{
				instance = (Instance) source.instance(i);
				//UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'"
				classIndex = (int) instance.classValue();
				sumOfWeights = sumOfWeights + instance.weight();
				m_perClassPerBag[bagIndex][classIndex] -= instance.weight();
				m_perClass[classIndex] -= instance.weight();
			}
			m_perBag[bagIndex] -= sumOfWeights;
			totaL -= sumOfWeights;
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:25,代碼來源:Distribution.cs

示例11: resampleWithWeights

		/// <summary> Creates a new dataset of the same size using random sampling
		/// with replacement according to the given weight vector. The
		/// weights of the instances in the new dataset are set to one.
		/// The length of the weight vector has to be the same as the
		/// number of instances in the dataset, and all weights have to
		/// be positive.
		/// 
		/// </summary>
		/// <param name="random">a random number generator
		/// </param>
		/// <param name="weights">the weight vector
		/// </param>
		/// <returns> the new dataset
		/// </returns>
		/// <exception cref="IllegalArgumentException">if the weights array is of the wrong
		/// length or contains negative weights.
		/// </exception>
		public virtual Instances resampleWithWeights(System.Random random, double[] weights)
		{
			
			if (weights.Length != numInstances())
			{
				throw new System.ArgumentException("weights.length != numInstances.");
			}
			Instances newData = new Instances(this, numInstances());
			if (numInstances() == 0)
			{
				return newData;
			}
			double[] probabilities = new double[numInstances()];
			double sumProbs = 0, sumOfWeights = Utils.sum(weights);
			for (int i = 0; i < numInstances(); i++)
			{
				sumProbs += random.NextDouble();
				probabilities[i] = sumProbs;
			}
			Utils.normalize(probabilities, sumProbs / sumOfWeights);
			
			// Make sure that rounding errors don't mess things up
			probabilities[numInstances() - 1] = sumOfWeights;
			int k = 0; int l = 0;
			sumProbs = 0;
			while ((k < numInstances() && (l < numInstances())))
			{
				if (weights[l] < 0)
				{
					throw new System.ArgumentException("Weights have to be positive.");
				}
				sumProbs += weights[l];
				while ((k < numInstances()) && (probabilities[k] <= sumProbs))
				{
					newData.add(instance(l));
					newData.instance(k).Weight = 1;
					k++;
				}
				l++;
			}
			return newData;
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:59,代碼來源:Instances.cs

示例12: classifyTest

    // Test the classification result of each map that a user played,
    // with the data available as if they were playing through it
    public static void classifyTest(String dataString, String playerID)
    {
        try {
            java.io.StringReader stringReader = new java.io.StringReader(dataString);
            java.io.BufferedReader buffReader = new java.io.BufferedReader(stringReader);

            /* NOTE THAT FOR NAIVE BAYES ALL WEIGHTS CAN BE = 1*/
            //weka.core.converters.ConverterUtils.DataSource source = new weka.core.converters.ConverterUtils.DataSource("iris.arff");
            weka.core.Instances thisData = new weka.core.Instances(buffReader); //source.getDataSet();
            if (thisData.classIndex() == -1)
                thisData.setClassIndex(thisData.numAttributes() - 1);

            weka.core.Instances thisUniqueData = new weka.core.Instances(thisData);
            if (thisUniqueData.classIndex() == -1)
                thisUniqueData.setClassIndex(thisUniqueData.numAttributes() - 1);
            thisUniqueData.delete();

            if (allUniqueData == null) {
                allUniqueData = new weka.core.Instances(thisData);
                if (allUniqueData.classIndex() == -1)
                    allUniqueData.setClassIndex(allUniqueData.numAttributes() - 1);
                allUniqueData.delete();
            }

            weka.core.InstanceComparator com = new weka.core.InstanceComparator(false);

            for (int i = 0; i < thisData.numInstances(); i++)
            {
                bool dup = false;
                for (int j = 0; j < allUniqueData.numInstances(); j++)
                {
                    if (com.compare(thisData.instance(i),allUniqueData.instance(j)) == 0)
                    {
                        Debug.Log("Duplicate found!");
                        dup = true;
                        break;
                    }
                }
                if (!dup)
                    allUniqueData.add(thisData.instance(i));
                else
                    dupInstances++;
            }

            for (int i = 0; i < thisData.numInstances(); i++)
            {
                bool dup = false;
                for (int j = 0; j < thisUniqueData.numInstances(); j++)
                {
                    if (com.compare(thisData.instance(i),thisUniqueData.instance(j)) == 0)
                    {
                        Debug.Log("Duplicate found!");
                        dup = true;
                        break;
                    }
                }
                if (!dup)
                    thisUniqueData.add(thisData.instance(i));
                else
                    dupInstancesSamePlayer++;
            }

            //Debug.Log("All Data Instance Count = " + thisData.numInstances());
            //Debug.Log("Unique Data Instance Count = " + thisUniqueData.numInstances());
            //Debug.Log("Done!");

        } catch (java.lang.Exception ex)
        {
            Debug.LogError(ex.getMessage());
        }
    }
開發者ID:AlexanderMazaletskiy,項目名稱:PCG-Angry-Bots,代碼行數:73,代碼來源:wekaDuplicateFilter.cs

示例13: performIteration

		/// <summary> Performs one boosting iteration.</summary>
		private void  performIteration(double[][] trainYs, double[][] trainFs, double[][] probs, Instances data, double origSumOfWeights)
		{
			
			if (m_Debug)
			{
				System.Console.Error.WriteLine("Training classifier " + (m_NumGenerated + 1));
			}
			
			// Build the new models
			for (int j = 0; j < m_NumClasses; j++)
			{
				if (m_Debug)
				{
					System.Console.Error.WriteLine("\t...for class " + (j + 1) + " (" + m_ClassAttribute.name() + "=" + m_ClassAttribute.value_Renamed(j) + ")");
				}
				
				// Make copy because we want to save the weights
				Instances boostData = new Instances(data);
				
				// Set instance pseudoclass and weights
				for (int i = 0; i < probs.Length; i++)
				{
					
					// Compute response and weight
					double p = probs[i][j];
					double z, actual = trainYs[i][j];
					if (actual == 1 - m_Offset)
					{
						z = 1.0 / p;
						if (z > Z_MAX)
						{
							// threshold
							z = Z_MAX;
						}
					}
					else
					{
						z = (- 1.0) / (1.0 - p);
						if (z < - Z_MAX)
						{
							// threshold
							z = - Z_MAX;
						}
					}
					double w = (actual - p) / z;
					
					// Set values for instance
					Instance current = boostData.instance(i);
					current.setValue(boostData.classIndex(), z);
					current.Weight = current.weight() * w;
				}
				
				// Scale the weights (helps with some base learners)
				double sumOfWeights = boostData.sumOfWeights();
				double scalingFactor = (double) origSumOfWeights / sumOfWeights;
				for (int i = 0; i < probs.Length; i++)
				{
					Instance current = boostData.instance(i);
					current.Weight = current.weight() * scalingFactor;
				}
				
				// Select instances to train the classifier on
				Instances trainData = boostData;
				if (m_WeightThreshold < 100)
				{
					trainData = selectWeightQuantile(boostData, (double) m_WeightThreshold / 100);
				}
				else
				{
					if (m_UseResampling)
					{
						double[] weights = new double[boostData.numInstances()];
						for (int kk = 0; kk < weights.Length; kk++)
						{
							weights[kk] = boostData.instance(kk).weight();
						}
						trainData = boostData.resampleWithWeights(m_RandomInstance, weights);
					}
				}
				
				// Build the classifier
				m_Classifiers[j][m_NumGenerated].buildClassifier(trainData);
			}
			
			// Evaluate / increment trainFs from the classifier
			for (int i = 0; i < trainFs.Length; i++)
			{
				double[] pred = new double[m_NumClasses];
				double predSum = 0;
				for (int j = 0; j < m_NumClasses; j++)
				{
					pred[j] = m_Shrinkage * m_Classifiers[j][m_NumGenerated].classifyInstance(data.instance(i));
					predSum += pred[j];
				}
				predSum /= m_NumClasses;
				for (int j = 0; j < m_NumClasses; j++)
				{
					trainFs[i][j] += (pred[j] - predSum) * (m_NumClasses - 1) / m_NumClasses;
				}
//.........這裏部分代碼省略.........
開發者ID:intille,項目名稱:mitessoftware,代碼行數:101,代碼來源:LogitBoost.cs

示例14: buildClassifier


//.........這裏部分代碼省略.........
					for (int i = 0; i < m_NumFolds; i++)
					{
						
						// Get train and test folds
						Instances train = data.trainCV(m_NumFolds, i, m_RandomInstance);
						Instances test = data.testCV(m_NumFolds, i);
						
						// Make class numeric
						Instances trainN = new Instances(train);
						trainN.ClassIndex = - 1;
						trainN.deleteAttributeAt(classIndex);
						trainN.insertAttributeAt(new weka.core.Attribute("'pseudo class'"), classIndex);
						trainN.ClassIndex = classIndex;
						m_NumericClassData = new Instances(trainN, 0);
						
						// Get class values
						int numInstances = train.numInstances();
						double[][] tmpArray = new double[numInstances][];
						for (int i2 = 0; i2 < numInstances; i2++)
						{
							tmpArray[i2] = new double[m_NumClasses];
						}
						double[][] trainFs = tmpArray;
						double[][] tmpArray2 = new double[numInstances][];
						for (int i3 = 0; i3 < numInstances; i3++)
						{
							tmpArray2[i3] = new double[m_NumClasses];
						}
						double[][] trainYs = tmpArray2;
						for (int j = 0; j < m_NumClasses; j++)
						{
							for (int k = 0; k < numInstances; k++)
							{
								trainYs[k][j] = (train.instance(k).classValue() == j)?1.0 - m_Offset:0.0 + (m_Offset / (double) m_NumClasses);
							}
						}
						
						// Perform iterations
						double[][] probs = initialProbs(numInstances);
						m_NumGenerated = 0;
						double sumOfWeights = train.sumOfWeights();
						for (int j = 0; j < this.NumIterations; j++)
						{
							performIteration(trainYs, trainFs, probs, trainN, sumOfWeights);
							Evaluation eval = new Evaluation(train);
							eval.evaluateModel(this, test);
							results[j] += eval.correct();
						}
					}
				}
				
				// Find the number of iterations with the lowest error
				//UPGRADE_TODO: The equivalent in .NET for field 'java.lang.Double.MAX_VALUE' may return a different value. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1043'"
				double bestResult = - System.Double.MaxValue;
				for (int j = 0; j < this.NumIterations; j++)
				{
					if (results[j] > bestResult)
					{
						bestResult = results[j];
						bestNumIterations = j;
					}
				}
				if (m_Debug)
				{
					System.Console.Error.WriteLine("Best result for " + bestNumIterations + " iterations: " + bestResult);
				}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:67,代碼來源:LogitBoost.cs

示例15: selectWeightQuantile

		/// <summary> Select only instances with weights that contribute to 
		/// the specified quantile of the weight distribution
		/// 
		/// </summary>
		/// <param name="data">the input instances
		/// </param>
		/// <param name="quantile">the specified quantile eg 0.9 to select 
		/// 90% of the weight mass
		/// </param>
		/// <returns> the selected instances
		/// </returns>
		protected internal virtual Instances selectWeightQuantile(Instances data, double quantile)
		{
			
			int numInstances = data.numInstances();
			Instances trainData = new Instances(data, numInstances);
			double[] weights = new double[numInstances];
			
			double sumOfWeights = 0;
			for (int i = 0; i < numInstances; i++)
			{
				weights[i] = data.instance(i).weight();
				sumOfWeights += weights[i];
			}
			double weightMassToSelect = sumOfWeights * quantile;
			int[] sortedIndices = Utils.sort(weights);
			
			// Select the instances
			sumOfWeights = 0;
			for (int i = numInstances - 1; i >= 0; i--)
			{
				Instance instance = (Instance) data.instance(sortedIndices[i]).copy();
				trainData.add(instance);
				sumOfWeights += weights[sortedIndices[i]];
				if ((sumOfWeights > weightMassToSelect) && (i > 0) && (weights[sortedIndices[i]] != weights[sortedIndices[i - 1]]))
				{
					break;
				}
			}
			if (m_Debug)
			{
				System.Console.Error.WriteLine("Selected " + trainData.numInstances() + " out of " + numInstances);
			}
			return trainData;
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:45,代碼來源:LogitBoost.cs


注:本文中的weka.core.Instances.instance方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。