當前位置: 首頁>>代碼示例>>C#>>正文


C# Instances.numInstances方法代碼示例

本文整理匯總了C#中weka.core.Instances.numInstances方法的典型用法代碼示例。如果您正苦於以下問題:C# Instances.numInstances方法的具體用法?C# Instances.numInstances怎麽用?C# Instances.numInstances使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在weka.core.Instances的用法示例。


在下文中一共展示了Instances.numInstances方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。

示例1: classifyTest

    // Test the classification result of each map that a user played,
    // with the data available as if they were playing through it
    public static void classifyTest(String dataString, String playerID)
    {
        String results = "";
        try {
            java.io.StringReader stringReader = new java.io.StringReader(dataString);
            java.io.BufferedReader buffReader = new java.io.BufferedReader(stringReader);

            /* NOTE THAT FOR NAIVE BAYES ALL WEIGHTS CAN BE = 1*/
            //weka.core.converters.ConverterUtils.DataSource source = new weka.core.converters.ConverterUtils.DataSource("iris.arff");
            weka.core.Instances data = new weka.core.Instances(buffReader); //source.getDataSet();
            // setting class attribute if the data format does not provide this information
            // For example, the XRFF format saves the class attribute information as well
            if (data.classIndex() == -1)
                data.setClassIndex(data.numAttributes() - 1);

            weka.classifiers.Classifier cl;
            for (int i = 3; i < data.numInstances(); i++) {
                cl = new weka.classifiers.bayes.NaiveBayes();
                //cl = new weka.classifiers.trees.J48();
                //cl = new weka.classifiers.lazy.IB1();
                //cl = new weka.classifiers.functions.MultilayerPerceptron();
                ((weka.classifiers.functions.MultilayerPerceptron)cl).setHiddenLayers("12");

                weka.core.Instances subset = new weka.core.Instances(data,0,i);
                cl.buildClassifier(subset);

                weka.classifiers.Evaluation eval = new weka.classifiers.Evaluation(subset);
         		eval.crossValidateModel(cl, subset, 3, new java.util.Random(1));
                results = results + eval.pctCorrect(); // For accuracy measurement
                /* For Mathews Correlation Coefficient */
                //double TP = eval.numTruePositives(1);
                //double FP = eval.numFalsePositives(1);
                //double TN = eval.numTrueNegatives(1);
                //double FN = eval.numFalseNegatives(1);
                //double correlationCoeff = ((TP*TN)-(FP*FN))/Math.Sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN));
                //results = results + correlationCoeff;
                if (i != data.numInstances()-1)
                    results = results + ", ";
                if(i == data.numInstances()-1)
                    Debug.Log("Player: " + playerID + ", Num Maps: " + data.numInstances() + ", AUC: " + eval.areaUnderROC(1));
            }
        } catch (java.lang.Exception ex)
        {
            Debug.LogError(ex.getMessage());
        }
        // Write values to file for a matlab read
        // For accuracy
         	StreamWriter writer = new StreamWriter("DataForMatlab/"+playerID+"_CrossFoldValidations_NeuralNet.txt");

        //StreamWriter writer = new StreamWriter("DataForMatlab/"+playerID+"_CrossFoldCorrCoeff.txt"); // For mathews cc
        writer.WriteLine(results);
        writer.Close();
        Debug.Log(playerID + " has been written to file");
    }
開發者ID:AlexanderMazaletskiy,項目名稱:PCG-Angry-Bots,代碼行數:56,代碼來源:wekaAttributeSelectionCounter.cs

示例2: Main

  public static void Main(string[] args) {
    try {
      int runs = 1;
      string algo = "";
      string data = "";
      if(args.Length>0) runs = Convert.ToInt32(args[0]);
      if(args.Length>1) algo = args[1];
      if(args.Length>2) data = args[2];

      Stopwatch read = new Stopwatch(), 
        build = new Stopwatch(), 
        classify = new Stopwatch();
      for (int cnt=0; cnt<runs; cnt++) {
        read.Start();
        Instances train = new Instances(new java.io.FileReader(data+"train.arff"));
        train.setClassIndex(train.numAttributes() - 1);
        Instances test = new Instances(new java.io.FileReader(data+"test.arff"));
        test.setClassIndex(test.numAttributes() - 1);
        read.Stop();

        Classifier[] clList = {
          new weka.classifiers.bayes.NaiveBayes(),
          new weka.classifiers.trees.RandomForest(),
          new weka.classifiers.trees.J48(),
          new weka.classifiers.functions.MultilayerPerceptron(),
          new weka.classifiers.rules.ConjunctiveRule(),
          new weka.classifiers.functions.SMO()
        };

        build.Start();
        foreach (Classifier classifier in clList) {
          if(algo.Equals("") || algo.Equals("All") || classifier.getClass().getSimpleName().Equals(algo))
              classifier.buildClassifier(train);
        }
        build.Stop();

        classify.Start();
        foreach (Classifier classifier in clList) {
          if(algo.Equals("") || algo.Equals("All") || classifier.getClass().getSimpleName().Equals(algo)) {
              int numCorrect = 0;
              for (int i = 0; i < test.numInstances(); i++)
              {
                  if (classifier.classifyInstance(test.instance(i)) == test.instance(i).classValue())
                      numCorrect++;
              }
              //Console.Write(classifier.getClass().getSimpleName() + "\t" + numCorrect + " out of " + test.numInstances() + " correct (" +(100.0 * numCorrect / test.numInstances()) + "%)");
          }
        }
        classify.Stop();
      }
      Console.WriteLine("{\""+ algo + "\"," + read.ElapsedMilliseconds + "," + build.ElapsedMilliseconds + "," + classify.ElapsedMilliseconds + "," + (read.ElapsedMilliseconds+build.ElapsedMilliseconds+classify.ElapsedMilliseconds)+"};");
      if(args.Length>3) Console.ReadLine();
    } catch (java.lang.Exception e){
      e.printStackTrace();
    }
  }
開發者ID:HairyFotr,項目名稱:Weka-on-.NET,代碼行數:56,代碼來源:Program.cs

示例3: evaluateModel

		/// <summary> Evaluates the classifier on a given set of instances. Note that
		/// the data must have exactly the same format (e.g. order of
		/// attributes) as the data used to train the classifier! Otherwise
		/// the results will generally be meaningless.
		/// 
		/// </summary>
		/// <param name="classifier">machine learning classifier
		/// </param>
		/// <param name="data">set of test instances for evaluation
		/// </param>
		/// <returns> the predictions
		/// </returns>
		/// <throws>  Exception if model could not be evaluated  </throws>
		/// <summary> successfully 
		/// </summary>
		public virtual double[] evaluateModel(Classifier classifier, Instances data)
		{
			
			double[] predictions = new double[data.numInstances()];
			
			for (int i = 0; i < data.numInstances(); i++)
			{
				predictions[i] = evaluateModelOnce((Classifier) classifier, data.instance(i));
			}
			return predictions;
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:26,代碼來源:Evaluation.cs

示例4: buildClassifier

		public override void  buildClassifier(Instances insts)
		{
			
			if (insts.checkForStringAttributes())
			{
				throw new Exception("Cannot handle string attributes!");
			}
			if (insts.numClasses() > 2)
			{
				throw new System.Exception("Can only handle two-class datasets!");
			}
			if (insts.classAttribute().Numeric)
			{
				throw new Exception("Can't handle a numeric class!");
			}
			
			// Filter data
			m_Train = new Instances(insts);
			m_Train.deleteWithMissingClass();
			m_ReplaceMissingValues = new ReplaceMissingValues();
			m_ReplaceMissingValues.setInputFormat(m_Train);
			m_Train = Filter.useFilter(m_Train, m_ReplaceMissingValues);
			
			m_NominalToBinary = new NominalToBinary();
			m_NominalToBinary.setInputFormat(m_Train);
			m_Train = Filter.useFilter(m_Train, m_NominalToBinary);
			
			/** Randomize training data */
			//UPGRADE_TODO: The differences in the expected value  of parameters for constructor 'java.util.Random.Random'  may cause compilation errors.  "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1092'"
			m_Train.randomize(new System.Random((System.Int32) m_Seed));
			
			/** Make space to store perceptrons */
			m_Additions = new int[m_MaxK + 1];
			m_IsAddition = new bool[m_MaxK + 1];
			m_Weights = new int[m_MaxK + 1];
			
			/** Compute perceptrons */
			m_K = 0;
			for (int it = 0; it < m_NumIterations; it++)
			{
				for (int i = 0; i < m_Train.numInstances(); i++)
				{
					Instance inst = m_Train.instance(i);
					if (!inst.classIsMissing())
					{
						int prediction = makePrediction(m_K, inst);
						//UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'"
						int classValue = (int) inst.classValue();
						if (prediction == classValue)
						{
							m_Weights[m_K]++;
						}
						else
						{
							m_IsAddition[m_K] = (classValue == 1);
							m_Additions[m_K] = i;
							m_K++;
							m_Weights[m_K]++;
						}
						if (m_K == m_MaxK)
						{
							//UPGRADE_NOTE: Labeled break statement was changed to a goto statement. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1012'"
							goto out_brk;
						}
					}
				}
			}
			//UPGRADE_NOTE: Label 'out_brk' was added. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1011'"

out_brk: ;
			
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:72,代碼來源:VotedPerceptron.cs

示例5: resetDistribution

		/// <summary> Sets distribution associated with model.</summary>
		public override void  resetDistribution(Instances data)
		{
			
			Instances insts = new Instances(data, data.numInstances());
			for (int i = 0; i < data.numInstances(); i++)
			{
				if (whichSubset(data.instance(i)) > - 1)
				{
					insts.add(data.instance(i));
				}
			}
			Distribution newD = new Distribution(insts, this);
			newD.addInstWithUnknown(data, m_attIndex);
			m_distribution = newD;
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:16,代碼來源:C45Split.cs

示例6: mergeInstances

		/// <summary> Merges two sets of Instances together. The resulting set will have
		/// all the attributes of the first set plus all the attributes of the 
		/// second set. The number of instances in both sets must be the same.
		/// 
		/// </summary>
		/// <param name="first">the first set of Instances
		/// </param>
		/// <param name="second">the second set of Instances
		/// </param>
		/// <returns> the merged set of Instances
		/// </returns>
		/// <exception cref="IllegalArgumentException">if the datasets are not the same size
		/// </exception>
		public static Instances mergeInstances(Instances first, Instances second)
		{
			
			if (first.numInstances() != second.numInstances())
			{
				throw new System.ArgumentException("Instance sets must be of the same size");
			}
			
			// Create the vector of merged attributes
			FastVector newAttributes = new FastVector();
			for (int i = 0; i < first.numAttributes(); i++)
			{
				newAttributes.addElement(first.attribute(i));
			}
			for (int i = 0; i < second.numAttributes(); i++)
			{
				newAttributes.addElement(second.attribute(i));
			}
			
			// Create the set of Instances
			Instances merged = new Instances(first.relationName() + '_' + second.relationName(), newAttributes, first.numInstances());
			// Merge each instance
			for (int i = 0; i < first.numInstances(); i++)
			{
				merged.add(first.instance(i).mergeInstance(second.instance(i)));
			}
			return merged;
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:41,代碼來源:Instances.cs

示例7: PerformTraining

        /// <summary>
        /// Build the learning model for classification
        /// </summary>
        /// <param name="InstancesList">list of instances </param>
        /// <param name="NumberofClusters">Number of Clusters</param>
        /// <param name="TextBoxForFeedback">Text box for the results (can be NULL)</param>
        /// <param name="PanelForVisualFeedback">Panel to display visual results if avalaible (can be NULL)</param>
        public Classifier PerformTraining(FormForClassificationInfo WindowForClassificationParam, Instances InstancesList, /*int NumberofClusters,*/ RichTextBox TextBoxForFeedback,
                                            Panel PanelForVisualFeedback, out weka.classifiers.Evaluation ModelEvaluation, bool IsCellular)
        {
            //   weka.classifiers.Evaluation ModelEvaluation = null;
            // FormForClassificationInfo WindowForClassificationParam = new FormForClassificationInfo(GlobalInfo);
            ModelEvaluation = null;
            //  if (WindowForClassificationParam.ShowDialog() != System.Windows.Forms.DialogResult.OK) return null;
            //   weka.classifiers.Evaluation ModelEvaluation = new Evaluation(

            cParamAlgo ClassifAlgoParams = WindowForClassificationParam.GetSelectedAlgoAndParameters();
            if (ClassifAlgoParams == null) return null;

            //this.Cursor = Cursors.WaitCursor;

            //  cParamAlgo ClassificationAlgo = WindowForClassificationParam.GetSelectedAlgoAndParameters();
            cListValuesParam Parameters = ClassifAlgoParams.GetListValuesParam();

            //Classifier this.CurrentClassifier = null;

            // -------------------------- Classification -------------------------------
            // create the instances
            // InstancesList = this.ListInstances;
            this.attValsWithoutClasses = new FastVector();

            if (IsCellular)
                for (int i = 0; i < cGlobalInfo.ListCellularPhenotypes.Count; i++)
                    this.attValsWithoutClasses.addElement(cGlobalInfo.ListCellularPhenotypes[i].Name);
            else
                for (int i = 0; i < cGlobalInfo.ListWellClasses.Count; i++)
                    this.attValsWithoutClasses.addElement(cGlobalInfo.ListWellClasses[i].Name);

            InstancesList.insertAttributeAt(new weka.core.Attribute("Class", this.attValsWithoutClasses), InstancesList.numAttributes());
            //int A = Classes.Count;
            for (int i = 0; i < Classes.Count; i++)
                InstancesList.get(i).setValue(InstancesList.numAttributes() - 1, Classes[i]);

            InstancesList.setClassIndex(InstancesList.numAttributes() - 1);

            weka.core.Instances train = new weka.core.Instances(InstancesList, 0, InstancesList.numInstances());

            if (PanelForVisualFeedback != null)
                PanelForVisualFeedback.Controls.Clear();

            #region List classifiers

            #region J48
            if (ClassifAlgoParams.Name == "J48")
            {
                this.CurrentClassifier = new weka.classifiers.trees.J48();
                ((J48)this.CurrentClassifier).setMinNumObj((int)Parameters.ListDoubleValues.Get("numericUpDownMinInstLeaf").Value);
                ((J48)this.CurrentClassifier).setConfidenceFactor((float)Parameters.ListDoubleValues.Get("numericUpDownConfFactor").Value);
                ((J48)this.CurrentClassifier).setNumFolds((int)Parameters.ListDoubleValues.Get("numericUpDownNumFolds").Value);
                ((J48)this.CurrentClassifier).setUnpruned((bool)Parameters.ListCheckValues.Get("checkBoxUnPruned").Value);
                ((J48)this.CurrentClassifier).setUseLaplace((bool)Parameters.ListCheckValues.Get("checkBoxLaplacianSmoothing").Value);
                ((J48)this.CurrentClassifier).setSeed((int)Parameters.ListDoubleValues.Get("numericUpDownSeedNumber").Value);
                ((J48)this.CurrentClassifier).setSubtreeRaising((bool)Parameters.ListCheckValues.Get("checkBoxSubTreeRaising").Value);

                //   CurrentClassif.SetJ48Tree((J48)this.CurrentClassifier, Classes.Length);
                this.CurrentClassifier.buildClassifier(train);
                // display results training
                // display tree
                if (PanelForVisualFeedback != null)
                {
                    GViewer GraphView = DisplayTree(GlobalInfo, ((J48)this.CurrentClassifier), IsCellular).gViewerForTreeClassif;
                    GraphView.Size = new System.Drawing.Size(PanelForVisualFeedback.Width, PanelForVisualFeedback.Height);
                    GraphView.Anchor = (AnchorStyles.Bottom | AnchorStyles.Top | AnchorStyles.Left | AnchorStyles.Right);
                    PanelForVisualFeedback.Controls.Clear();
                    PanelForVisualFeedback.Controls.Add(GraphView);
                }
            }
            #endregion
            #region Random Tree
            else if (ClassifAlgoParams.Name == "RandomTree")
            {
                this.CurrentClassifier = new weka.classifiers.trees.RandomTree();

                if ((bool)Parameters.ListCheckValues.Get("checkBoxMaxDepthUnlimited").Value)
                    ((RandomTree)this.CurrentClassifier).setMaxDepth(0);
                else
                    ((RandomTree)this.CurrentClassifier).setMaxDepth((int)Parameters.ListDoubleValues.Get("numericUpDownMaxDepth").Value);
                ((RandomTree)this.CurrentClassifier).setSeed((int)Parameters.ListDoubleValues.Get("numericUpDownSeed").Value);
                ((RandomTree)this.CurrentClassifier).setMinNum((double)Parameters.ListDoubleValues.Get("numericUpDownMinWeight").Value);

                if ((bool)Parameters.ListCheckValues.Get("checkBoxIsBackfitting").Value)
                {
                    ((RandomTree)this.CurrentClassifier).setNumFolds((int)Parameters.ListDoubleValues.Get("numericUpDownBackFittingFolds").Value);
                }
                else
                {
                    ((RandomTree)this.CurrentClassifier).setNumFolds(0);
                }
                this.CurrentClassifier.buildClassifier(train);
                //string StringForTree = ((RandomTree)this.CurrentClassifier).graph().Remove(0, ((RandomTree)this.CurrentClassifier).graph().IndexOf("{") + 2);
//.........這裏部分代碼省略.........
開發者ID:cyrenaique,項目名稱:HCSA,代碼行數:101,代碼來源:cMachineLearning.cs

示例8: Instances

		/// <summary> Constructor copying all instances and references to
		/// the header information from the given set of instances.
		/// 
		/// </summary>
		/// <param name="instances">the set to be copied
		/// </param>
		public Instances(Instances dataset):this(dataset, dataset.numInstances())
		{
			
			dataset.copyInstances(0, this, dataset.numInstances());
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:11,代碼來源:Instances.cs

示例9: classifyTest

    // Test the classification result of each map that a user played,
    // with the data available as if they were playing through it
    public static void classifyTest(String dataString, String playerID)
    {
        try {
            java.io.StringReader stringReader = new java.io.StringReader(dataString);
            java.io.BufferedReader buffReader = new java.io.BufferedReader(stringReader);

            /* NOTE THAT FOR NAIVE BAYES ALL WEIGHTS CAN BE = 1*/
            //weka.core.converters.ConverterUtils.DataSource source = new weka.core.converters.ConverterUtils.DataSource("iris.arff");
            weka.core.Instances thisData = new weka.core.Instances(buffReader); //source.getDataSet();
            if (thisData.classIndex() == -1)
                thisData.setClassIndex(thisData.numAttributes() - 1);

            weka.core.Instances thisUniqueData = new weka.core.Instances(thisData);
            if (thisUniqueData.classIndex() == -1)
                thisUniqueData.setClassIndex(thisUniqueData.numAttributes() - 1);
            thisUniqueData.delete();

            if (allUniqueData == null) {
                allUniqueData = new weka.core.Instances(thisData);
                if (allUniqueData.classIndex() == -1)
                    allUniqueData.setClassIndex(allUniqueData.numAttributes() - 1);
                allUniqueData.delete();
            }

            weka.core.InstanceComparator com = new weka.core.InstanceComparator(false);

            for (int i = 0; i < thisData.numInstances(); i++)
            {
                bool dup = false;
                for (int j = 0; j < allUniqueData.numInstances(); j++)
                {
                    if (com.compare(thisData.instance(i),allUniqueData.instance(j)) == 0)
                    {
                        Debug.Log("Duplicate found!");
                        dup = true;
                        break;
                    }
                }
                if (!dup)
                    allUniqueData.add(thisData.instance(i));
                else
                    dupInstances++;
            }

            for (int i = 0; i < thisData.numInstances(); i++)
            {
                bool dup = false;
                for (int j = 0; j < thisUniqueData.numInstances(); j++)
                {
                    if (com.compare(thisData.instance(i),thisUniqueData.instance(j)) == 0)
                    {
                        Debug.Log("Duplicate found!");
                        dup = true;
                        break;
                    }
                }
                if (!dup)
                    thisUniqueData.add(thisData.instance(i));
                else
                    dupInstancesSamePlayer++;
            }

            //Debug.Log("All Data Instance Count = " + thisData.numInstances());
            //Debug.Log("Unique Data Instance Count = " + thisUniqueData.numInstances());
            //Debug.Log("Done!");

        } catch (java.lang.Exception ex)
        {
            Debug.LogError(ex.getMessage());
        }
    }
開發者ID:AlexanderMazaletskiy,項目名稱:PCG-Angry-Bots,代碼行數:73,代碼來源:wekaDuplicateFilter.cs

示例10: resample

		/// <summary> Creates a new dataset of the same size using random sampling
		/// with replacement.
		/// 
		/// </summary>
		/// <param name="random">a random number generator
		/// </param>
		/// <returns> the new dataset
		/// </returns>
		public virtual Instances resample(System.Random random)
		{
			
			Instances newData = new Instances(this, numInstances());
			while (newData.numInstances() < numInstances())
			{
				newData.add(instance(random.Next(numInstances())));
			}
			return newData;
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:18,代碼來源:Instances.cs

示例11: split

		/// <summary> Splits the given set of instances into subsets.
		/// 
		/// </summary>
		/// <exception cref="Exception">if something goes wrong
		/// </exception>
		public Instances[] split(Instances data)
		{
			
			Instances[] instances = new Instances[m_numSubsets];
			double[] weights;
			double newWeight;
			Instance instance;
			int subset, i, j;
			
			for (j = 0; j < m_numSubsets; j++)
				instances[j] = new Instances((Instances) data, data.numInstances());
			for (i = 0; i < data.numInstances(); i++)
			{
				instance = ((Instances) data).instance(i);
				weights = GetWeights(instance);
				subset = whichSubset(instance);
				if (subset > - 1)
					instances[subset].add(instance);
				else
					for (j = 0; j < m_numSubsets; j++)
						if (Utils.gr(weights[j], 0))
						{
							newWeight = weights[j] * instance.weight();
							instances[j].add(instance);
							instances[j].lastInstance().Weight = newWeight;
						}
			}
			for (j = 0; j < m_numSubsets; j++)
				instances[j].compactify();
			
			return instances;
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:37,代碼來源:ClassifierSplitModel.cs

示例12: performIteration

		/// <summary> Performs one boosting iteration.</summary>
		private void  performIteration(double[][] trainYs, double[][] trainFs, double[][] probs, Instances data, double origSumOfWeights)
		{
			
			if (m_Debug)
			{
				System.Console.Error.WriteLine("Training classifier " + (m_NumGenerated + 1));
			}
			
			// Build the new models
			for (int j = 0; j < m_NumClasses; j++)
			{
				if (m_Debug)
				{
					System.Console.Error.WriteLine("\t...for class " + (j + 1) + " (" + m_ClassAttribute.name() + "=" + m_ClassAttribute.value_Renamed(j) + ")");
				}
				
				// Make copy because we want to save the weights
				Instances boostData = new Instances(data);
				
				// Set instance pseudoclass and weights
				for (int i = 0; i < probs.Length; i++)
				{
					
					// Compute response and weight
					double p = probs[i][j];
					double z, actual = trainYs[i][j];
					if (actual == 1 - m_Offset)
					{
						z = 1.0 / p;
						if (z > Z_MAX)
						{
							// threshold
							z = Z_MAX;
						}
					}
					else
					{
						z = (- 1.0) / (1.0 - p);
						if (z < - Z_MAX)
						{
							// threshold
							z = - Z_MAX;
						}
					}
					double w = (actual - p) / z;
					
					// Set values for instance
					Instance current = boostData.instance(i);
					current.setValue(boostData.classIndex(), z);
					current.Weight = current.weight() * w;
				}
				
				// Scale the weights (helps with some base learners)
				double sumOfWeights = boostData.sumOfWeights();
				double scalingFactor = (double) origSumOfWeights / sumOfWeights;
				for (int i = 0; i < probs.Length; i++)
				{
					Instance current = boostData.instance(i);
					current.Weight = current.weight() * scalingFactor;
				}
				
				// Select instances to train the classifier on
				Instances trainData = boostData;
				if (m_WeightThreshold < 100)
				{
					trainData = selectWeightQuantile(boostData, (double) m_WeightThreshold / 100);
				}
				else
				{
					if (m_UseResampling)
					{
						double[] weights = new double[boostData.numInstances()];
						for (int kk = 0; kk < weights.Length; kk++)
						{
							weights[kk] = boostData.instance(kk).weight();
						}
						trainData = boostData.resampleWithWeights(m_RandomInstance, weights);
					}
				}
				
				// Build the classifier
				m_Classifiers[j][m_NumGenerated].buildClassifier(trainData);
			}
			
			// Evaluate / increment trainFs from the classifier
			for (int i = 0; i < trainFs.Length; i++)
			{
				double[] pred = new double[m_NumClasses];
				double predSum = 0;
				for (int j = 0; j < m_NumClasses; j++)
				{
					pred[j] = m_Shrinkage * m_Classifiers[j][m_NumGenerated].classifyInstance(data.instance(i));
					predSum += pred[j];
				}
				predSum /= m_NumClasses;
				for (int j = 0; j < m_NumClasses; j++)
				{
					trainFs[i][j] += (pred[j] - predSum) * (m_NumClasses - 1) / m_NumClasses;
				}
//.........這裏部分代碼省略.........
開發者ID:intille,項目名稱:mitessoftware,代碼行數:101,代碼來源:LogitBoost.cs

示例13: buildClassifier

		/// <summary> Builds the boosted classifier</summary>
		public virtual void  buildClassifier(Instances data)
		{
			m_RandomInstance = new Random(m_Seed);
			Instances boostData;
			int classIndex = data.classIndex();
			
			if (data.classAttribute().Numeric)
			{
				throw new Exception("LogitBoost can't handle a numeric class!");
			}
			if (m_Classifier == null)
			{
				throw new System.Exception("A base classifier has not been specified!");
			}
			
			if (!(m_Classifier is WeightedInstancesHandler) && !m_UseResampling)
			{
				m_UseResampling = true;
			}
			if (data.checkForStringAttributes())
			{
				throw new Exception("Cannot handle string attributes!");
			}
			if (m_Debug)
			{
				System.Console.Error.WriteLine("Creating copy of the training data");
			}
			
			m_NumClasses = data.numClasses();
			m_ClassAttribute = data.classAttribute();
			
			// Create a copy of the data 
			data = new Instances(data);
			data.deleteWithMissingClass();
			
			// Create the base classifiers
			if (m_Debug)
			{
				System.Console.Error.WriteLine("Creating base classifiers");
			}
			m_Classifiers = new Classifier[m_NumClasses][];
			for (int j = 0; j < m_NumClasses; j++)
			{
				m_Classifiers[j] = Classifier.makeCopies(m_Classifier, this.NumIterations);
			}
			
			// Do we want to select the appropriate number of iterations
			// using cross-validation?
			int bestNumIterations = this.NumIterations;
			if (m_NumFolds > 1)
			{
				if (m_Debug)
				{
					System.Console.Error.WriteLine("Processing first fold.");
				}
				
				// Array for storing the results
				double[] results = new double[this.NumIterations];
				
				// Iterate throught the cv-runs
				for (int r = 0; r < m_NumRuns; r++)
				{
					
					// Stratify the data
					data.randomize(m_RandomInstance);
					data.stratify(m_NumFolds);
					
					// Perform the cross-validation
					for (int i = 0; i < m_NumFolds; i++)
					{
						
						// Get train and test folds
						Instances train = data.trainCV(m_NumFolds, i, m_RandomInstance);
						Instances test = data.testCV(m_NumFolds, i);
						
						// Make class numeric
						Instances trainN = new Instances(train);
						trainN.ClassIndex = - 1;
						trainN.deleteAttributeAt(classIndex);
						trainN.insertAttributeAt(new weka.core.Attribute("'pseudo class'"), classIndex);
						trainN.ClassIndex = classIndex;
						m_NumericClassData = new Instances(trainN, 0);
						
						// Get class values
						int numInstances = train.numInstances();
						double[][] tmpArray = new double[numInstances][];
						for (int i2 = 0; i2 < numInstances; i2++)
						{
							tmpArray[i2] = new double[m_NumClasses];
						}
						double[][] trainFs = tmpArray;
						double[][] tmpArray2 = new double[numInstances][];
						for (int i3 = 0; i3 < numInstances; i3++)
						{
							tmpArray2[i3] = new double[m_NumClasses];
						}
						double[][] trainYs = tmpArray2;
						for (int j = 0; j < m_NumClasses; j++)
						{
//.........這裏部分代碼省略.........
開發者ID:intille,項目名稱:mitessoftware,代碼行數:101,代碼來源:LogitBoost.cs

示例14: selectWeightQuantile

		/// <summary> Select only instances with weights that contribute to 
		/// the specified quantile of the weight distribution
		/// 
		/// </summary>
		/// <param name="data">the input instances
		/// </param>
		/// <param name="quantile">the specified quantile eg 0.9 to select 
		/// 90% of the weight mass
		/// </param>
		/// <returns> the selected instances
		/// </returns>
		protected internal virtual Instances selectWeightQuantile(Instances data, double quantile)
		{
			
			int numInstances = data.numInstances();
			Instances trainData = new Instances(data, numInstances);
			double[] weights = new double[numInstances];
			
			double sumOfWeights = 0;
			for (int i = 0; i < numInstances; i++)
			{
				weights[i] = data.instance(i).weight();
				sumOfWeights += weights[i];
			}
			double weightMassToSelect = sumOfWeights * quantile;
			int[] sortedIndices = Utils.sort(weights);
			
			// Select the instances
			sumOfWeights = 0;
			for (int i = numInstances - 1; i >= 0; i--)
			{
				Instance instance = (Instance) data.instance(sortedIndices[i]).copy();
				trainData.add(instance);
				sumOfWeights += weights[sortedIndices[i]];
				if ((sumOfWeights > weightMassToSelect) && (i > 0) && (weights[sortedIndices[i]] != weights[sortedIndices[i - 1]]))
				{
					break;
				}
			}
			if (m_Debug)
			{
				System.Console.Error.WriteLine("Selected " + trainData.numInstances() + " out of " + numInstances);
			}
			return trainData;
		}
開發者ID:intille,項目名稱:mitessoftware,代碼行數:45,代碼來源:LogitBoost.cs

示例15: buildClassifier

		/// <summary> Generates the classifier.
		/// 
		/// </summary>
		/// <param name="instances">set of instances serving as training data 
		/// </param>
		/// <exception cref="Exception">if the classifier has not been generated successfully
		/// </exception>
		public override void  buildClassifier(Instances instances)
		{
			//UPGRADE_TODO: The equivalent in .NET for field 'java.lang.Double.MAX_VALUE' may return a different value. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1043'"
			double bestVal = System.Double.MaxValue, currVal;
			//UPGRADE_TODO: The equivalent in .NET for field 'java.lang.Double.MAX_VALUE' may return a different value. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1043'"
			double bestPoint = - System.Double.MaxValue, sum;
			int bestAtt = - 1, numClasses;
			
			if (instances.checkForStringAttributes())
			{
				throw new Exception("Can't handle string attributes!");
			}
			
			double[][] bestDist = new double[3][];
			for (int i = 0; i < 3; i++)
			{
				bestDist[i] = new double[instances.numClasses()];
			}
			
			m_Instances = new Instances(instances);
			m_Instances.deleteWithMissingClass();
			
			if (m_Instances.numInstances() == 0)
			{
				throw new System.ArgumentException("No instances without missing " + "class values in training file!");
			}
			
			if (instances.numAttributes() == 1)
			{
				throw new System.ArgumentException("Attribute missing. Need at least one " + "attribute other than class attribute!");
			}
			
			if (m_Instances.classAttribute().Nominal)
			{
				numClasses = m_Instances.numClasses();
			}
			else
			{
				numClasses = 1;
			}
			
			// For each attribute
			bool first = true;
			for (int i = 0; i < m_Instances.numAttributes(); i++)
			{
				if (i != m_Instances.classIndex())
				{
					
					// Reserve space for distribution.
					double[][] tmpArray = new double[3][];
					for (int i2 = 0; i2 < 3; i2++)
					{
						tmpArray[i2] = new double[numClasses];
					}
					m_Distribution = tmpArray;
					
					// Compute value of criterion for best split on attribute
					if (m_Instances.attribute(i).Nominal)
					{
						currVal = findSplitNominal(i);
					}
					else
					{
						currVal = findSplitNumeric(i);
					}
					if ((first) || (currVal < bestVal))
					{
						bestVal = currVal;
						bestAtt = i;
						bestPoint = m_SplitPoint;
						for (int j = 0; j < 3; j++)
						{
							Array.Copy(m_Distribution[j], 0, bestDist[j], 0, numClasses);
						}
					}
					
					// First attribute has been investigated
					first = false;
				}
			}
			
			// Set attribute, split point and distribution.
			m_AttIndex = bestAtt;
			m_SplitPoint = bestPoint;
			m_Distribution = bestDist;
			if (m_Instances.classAttribute().Nominal)
			{
				for (int i = 0; i < m_Distribution.Length; i++)
				{
					double sumCounts = Utils.sum(m_Distribution[i]);
					if (sumCounts == 0)
					{
						// This means there were only missing attribute values
//.........這裏部分代碼省略.........
開發者ID:intille,項目名稱:mitessoftware,代碼行數:101,代碼來源:DecisionStump.cs


注:本文中的weka.core.Instances.numInstances方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。