本文整理匯總了C#中weka.core.Instances.enumerateAttributes方法的典型用法代碼示例。如果您正苦於以下問題:C# Instances.enumerateAttributes方法的具體用法?C# Instances.enumerateAttributes怎麽用?C# Instances.enumerateAttributes使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類weka.core.Instances
的用法示例。
在下文中一共展示了Instances.enumerateAttributes方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: selectModel
/// <summary> Selects C4.5-type split for the given dataset.</summary>
public override ClassifierSplitModel selectModel(Instances data)
{
double minResult;
//double currentResult;
BinC45Split[] currentModel;
BinC45Split bestModel = null;
NoSplit noSplitModel = null;
double averageInfoGain = 0;
int validModels = 0;
bool multiVal = true;
Distribution checkDistribution;
double sumOfWeights;
int i;
try
{
// Check if all Instances belong to one class or if not
// enough Instances to split.
checkDistribution = new Distribution(data);
noSplitModel = new NoSplit(checkDistribution);
if (Utils.sm(checkDistribution.total(), 2 * m_minNoObj) || Utils.eq(checkDistribution.total(), checkDistribution.perClass(checkDistribution.maxClass())))
return noSplitModel;
// Check if all attributes are nominal and have a
// lot of values.
System.Collections.IEnumerator enu = data.enumerateAttributes();
//UPGRADE_TODO: Method 'java.util.Enumeration.hasMoreElements' was converted to 'System.Collections.IEnumerator.MoveNext' which has a different behavior. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1073_javautilEnumerationhasMoreElements'"
while (enu.MoveNext())
{
//UPGRADE_TODO: Method 'java.util.Enumeration.nextElement' was converted to 'System.Collections.IEnumerator.Current' which has a different behavior. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1073_javautilEnumerationnextElement'"
weka.core.Attribute attribute = (weka.core.Attribute)enu.Current;
if ((attribute.Numeric) || (Utils.sm((double) attribute.numValues(), (0.3 * (double) m_allData.numInstances()))))
{
multiVal = false;
break;
}
}
currentModel = new BinC45Split[data.numAttributes()];
sumOfWeights = data.sumOfWeights();
// For each attribute.
for (i = 0; i < data.numAttributes(); i++)
{
// Apart from class attribute.
if (i != (data).classIndex())
{
// Get models for current attribute.
currentModel[i] = new BinC45Split(i, m_minNoObj, sumOfWeights);
currentModel[i].buildClassifier(data);
// Check if useful split for current attribute
// exists and check for enumerated attributes with
// a lot of values.
if (currentModel[i].checkModel())
if ((data.attribute(i).Numeric) || (multiVal || Utils.sm((double) data.attribute(i).numValues(), (0.3 * (double) m_allData.numInstances()))))
{
averageInfoGain = averageInfoGain + currentModel[i].infoGain();
validModels++;
}
}
else
currentModel[i] = null;
}
// Check if any useful split was found.
if (validModels == 0)
return noSplitModel;
averageInfoGain = averageInfoGain / (double) validModels;
// Find "best" attribute to split on.
minResult = 0;
for (i = 0; i < data.numAttributes(); i++)
{
if ((i != (data).classIndex()) && (currentModel[i].checkModel()))
// Use 1E-3 here to get a closer approximation to the original
// implementation.
if ((currentModel[i].infoGain() >= (averageInfoGain - 1e-3)) && Utils.gr(currentModel[i].gainRatio(), minResult))
{
bestModel = currentModel[i];
minResult = currentModel[i].gainRatio();
}
}
// Check if useful split was found.
if (Utils.eq(minResult, 0))
return noSplitModel;
// Add all Instances with unknown values for the corresponding
// attribute to the distribution for the model, so that
// the complete distribution is stored with the model.
bestModel.distribution().addInstWithUnknown(data, bestModel.attIndex());
// Set the split point analogue to C45 if attribute numeric.
bestModel.SplitPoint = m_allData;
return bestModel;
//.........這裏部分代碼省略.........