本文整理匯總了C++中eigen::VectorXd::segment方法的典型用法代碼示例。如果您正苦於以下問題:C++ VectorXd::segment方法的具體用法?C++ VectorXd::segment怎麽用?C++ VectorXd::segment使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類eigen::VectorXd
的用法示例。
在下文中一共展示了VectorXd::segment方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: Solve
void DiagonalBlockSparseMatrix::Solve(const Eigen::VectorXd& rhs, Eigen::VectorXd& sol)
{
int numRows = GetNumRows();
int numCols = GetNumCols();
LOG_IF(FATAL, numRows != numCols) << "DiagonalBlockSparseMatrix is not a square matrix and noninvertible.";
int vecLength = rhs.size();
LOG_IF(FATAL, numCols != vecLength) << "DiagonalBlockSparseMatrix and right hand side vector are of different dimensions.";
sol.resize(numCols);
int numUntilLast = 0;
int numDiagElements = static_cast<int>(mDiagElements.size());
for (int i = 0; i < numDiagElements; ++i)
{
int numColsElement = mDiagElements[i].GetNumCols();
Eigen::VectorXd partSol(numColsElement);
Eigen::VectorXd partRhs = rhs.segment(numUntilLast, numColsElement);
#if LLT_SOLVE
mDiagElements[i].LltSolve(partRhs, partSol);
#else
mDiagElements[i].ConjugateGradientSolve(partRhs, partSol);
#endif
sol.segment(numUntilLast, numColsElement) = partSol;
numUntilLast += numColsElement;
}
}
示例2: rcppstandardize_rates
// Compute the average contour, by calling compute_contour_vals repeatedly
//
// [[Rcpp::export]]
Eigen::MatrixXd rcppstandardize_rates(const Eigen::VectorXd &tiles, const Eigen::VectorXd &rates,
const Eigen::VectorXd &xseed, const Eigen::VectorXd &yseed,
const Eigen::MatrixXd &marks, const Eigen::VectorXd &nmrks,
const std::string &distm) {
bool use_weighted_mean = true;
int nxmrks = nmrks(0);
int nymrks = nmrks(1);
Eigen::MatrixXd Zvals = Eigen::MatrixXd::Zero(nymrks,nxmrks);
Eigen::MatrixXd zvals = Eigen::MatrixXd::Zero(nymrks,nxmrks);
int niters = tiles.size();
for ( int i = 0, pos = 0 ; i < niters ; i++ ) {
int now_tiles = (int)tiles(i);
Eigen::VectorXd now_rates = rates.segment(pos,now_tiles);
Eigen::VectorXd now_xseed = xseed.segment(pos,now_tiles);
Eigen::VectorXd now_yseed = yseed.segment(pos,now_tiles);
Eigen::MatrixXd now_seeds(now_tiles, 2);
now_seeds << now_xseed,now_yseed;
if (use_weighted_mean) {
compute_contour_vals(zvals,marks,now_rates,now_seeds,distm);
zvals = zvals.array() - zvals.mean();
} else {
now_rates = now_rates.array() - now_rates.mean();
compute_contour_vals(zvals,marks,now_rates,now_seeds,distm);
}
Zvals += zvals;
pos += now_tiles;
}
// Do not divide by niters here but in 'average.eems.contours' instead
// Zvals = Zvals.array() / niters;
return Zvals.transpose();
}
示例3: updateDynamics
void BallJointConstraint::updateDynamics(Eigen::MatrixXd & _J1, Eigen::VectorXd & _C, Eigen::VectorXd & _CDot, int _rowIndex) {
getJacobian();
_J1.block(_rowIndex, 0, 3, mBodyNode1->getSkeleton()->getNumGenCoords()) = mJ1;
Eigen::Vector3d worldP1 = mBodyNode1->getWorldTransform() * mOffset1;
Eigen::VectorXd qDot1 = mBodyNode1->getSkeleton()->get_dq();
_C.segment(_rowIndex, 3) = worldP1 - mOffset2;
_CDot.segment(_rowIndex, 3) = mJ1 * qDot1;
}
示例4: convertCartesianToSphericalState
//! Convert Cartesian to spherical state.
Eigen::VectorXd convertCartesianToSphericalState( const Eigen::VectorXd& cartesianState )
{
// Create spherical state vector, initialized with zero entries.
Eigen::VectorXd convertedSphericalState = Eigen::VectorXd::Zero( 6 );
// Compute radius.
convertedSphericalState( 0 ) = cartesianState.segment( 0, 3 ).norm( );
// Check if radius is nonzero.
/*
* If r > 0, the elevation and azimuth angles are computed using trigonometric relationships.
* If r = 0, the coordinates are at the origin, the elevation and azimuth angles equal to zero.
* Since the state vector was initialized with zeroes, this is already the case.
*/
if ( convertedSphericalState( 0 ) > std::numeric_limits< double >::epsilon( ) )
{
// Compute elevation and azimuth angles using trigonometric relationships.
// Azimuth angle.
convertedSphericalState( 1 ) = std::atan2( cartesianState( 1 ), cartesianState( 0 ) );
// Elevation angle.
convertedSphericalState( 2 ) = std::asin( cartesianState( 2 )
/ convertedSphericalState( 0 ) );
}
// Precompute sine/cosine of angles, which has multiple usages, to save computation time.
const double cosineOfElevationAngle = std::cos( convertedSphericalState( 2 ) );
const double sineOfElevationAngle = std::sin( convertedSphericalState( 2 ) );
const double cosineOfAzimuthAngle = std::cos( convertedSphericalState( 1 ) );
const double sineOfAzimuthAngle = std::sin( convertedSphericalState( 1 ) );
// Set up transformation matrix for cylindrical to spherical conversion.
Eigen::MatrixXd transformationMatrixCylindricalToSpherical = Eigen::MatrixXd::Zero( 3, 3 );
transformationMatrixCylindricalToSpherical( 0, 0 ) = cosineOfElevationAngle;
transformationMatrixCylindricalToSpherical( 0, 2 ) = sineOfElevationAngle;
transformationMatrixCylindricalToSpherical( 1, 1 ) = 1.0;
transformationMatrixCylindricalToSpherical( 2, 0 ) = -sineOfElevationAngle;
transformationMatrixCylindricalToSpherical( 2, 2 ) = cosineOfElevationAngle;
// Set up transformation matrix for Cartesian to cylindrical conversion.
Eigen::MatrixXd transformationMatrixCartesianToCylindrical = Eigen::MatrixXd::Zero( 3, 3 );
transformationMatrixCartesianToCylindrical( 0, 0 ) = cosineOfAzimuthAngle;
transformationMatrixCartesianToCylindrical( 0, 1 ) = sineOfAzimuthAngle;
transformationMatrixCartesianToCylindrical( 1, 0 ) = -sineOfAzimuthAngle;
transformationMatrixCartesianToCylindrical( 1, 1 ) = cosineOfAzimuthAngle;
transformationMatrixCartesianToCylindrical( 2, 2 ) = 1.0;
// Compute transformation matrix for Cartesian to spherical conversion.
const Eigen::MatrixXd transformationMatrixCartesianToSpherical
= transformationMatrixCylindricalToSpherical
* transformationMatrixCartesianToCylindrical;
// Perform transformation of velocity vector.
convertedSphericalState.segment( 3, 3 )
= transformationMatrixCartesianToSpherical * cartesianState.segment( 3, 3 );
// Return spherical state vector.
return convertedSphericalState;
}
示例5: updateDynamics
void PointConstraint::updateDynamics(std::vector<Eigen::MatrixXd> & _J, Eigen::VectorXd & _C, Eigen::VectorXd & _CDot, int _rowIndex) {
getJacobian();
SkeletonDynamics *skel = (SkeletonDynamics*)mBody->getSkel();
_J[mSkelIndex].block(_rowIndex, 0, 3, skel->getNumDofs()) = mJ;
Vector3d worldP = xformHom(mBody->getWorldTransform(), mOffset);
VectorXd qDot = skel->getQDotVector();
_C.segment(_rowIndex, 3) = worldP - mTarget;
_CDot.segment(_rowIndex, 3) = mJ * qDot;
}
示例6: updateDynamics
void PointConstraint::updateDynamics(std::vector<Eigen::MatrixXd> & _J, Eigen::VectorXd & _C, Eigen::VectorXd & _CDot, int _rowIndex) {
getJacobian();
dynamics::Skeleton *skel = mBody->getSkeleton();
_J[mSkelIndex].block(_rowIndex, 0, 3, skel->getDOF()) = mJ;
Eigen::Vector3d worldP = mBody->getWorldTransform() * mOffset;
Eigen::VectorXd qDot = skel->get_dq();
_C.segment(_rowIndex, 3) = worldP - mTarget;
_CDot.segment(_rowIndex, 3) = mJ * qDot;
}
示例7: computeCharge_impl
Eigen::VectorXd IEFSolver::computeCharge_impl(const Eigen::VectorXd & potential, int irrep) const
{
// The potential and charge vector are of dimension equal to the
// full dimension of the cavity. We have to select just the part
// relative to the irrep needed.
int fullDim = fullPCMMatrix_.rows();
Eigen::VectorXd charge = Eigen::VectorXd::Zero(fullDim);
int nrBlocks = blockPCMMatrix_.size();
int irrDim = fullDim/nrBlocks;
charge.segment(irrep*irrDim, irrDim) =
- blockPCMMatrix_[irrep] * potential.segment(irrep*irrDim, irrDim);
return charge;
}
示例8: updateDynamics
void ClosedLoopConstraint::updateDynamics(std::vector<Eigen::MatrixXd> & _J, Eigen::VectorXd & _C, Eigen::VectorXd & _CDot, int _rowIndex) {
getJacobian();
_J[mSkelIndex2].block(_rowIndex, 0, 3, mBody2->getSkel()->getNumDofs()).setZero();
_J[mSkelIndex1].block(_rowIndex, 0, 3, mBody1->getSkel()->getNumDofs()) = mJ1;
_J[mSkelIndex2].block(_rowIndex, 0, 3, mBody2->getSkel()->getNumDofs()) += mJ2;
Vector3d worldP1 = xformHom(mBody1->getWorldTransform(), mOffset1);
Vector3d worldP2 = xformHom(mBody2->getWorldTransform(), mOffset2);
VectorXd qDot1 = ((SkeletonDynamics*)mBody1->getSkel())->getPoseVelocity();
VectorXd qDot2 = ((SkeletonDynamics*)mBody2->getSkel())->getPoseVelocity();
_C.segment(_rowIndex, 3) = worldP1 - worldP2;
_CDot.segment(_rowIndex, 3) = mJ1 * qDot1 + mJ2 * qDot2;
}
示例9: updateDynamics
void BallJointConstraint::updateDynamics(Eigen::MatrixXd & _J1, Eigen::MatrixXd & _J2, Eigen::VectorXd & _C, Eigen::VectorXd & _CDot, int _rowIndex) {
getJacobian();
_J2.block(_rowIndex, 0, 3, mBodyNode2->getSkeleton()->getNumGenCoords()).setZero();
_J1.block(_rowIndex, 0, 3, mBodyNode1->getSkeleton()->getNumGenCoords()) = mJ1;
_J2.block(_rowIndex, 0, 3, mBodyNode2->getSkeleton()->getNumGenCoords()) += mJ2;
Eigen::Vector3d worldP1 = mBodyNode1->getWorldTransform() * mOffset1;
Eigen::VectorXd qDot1 = ((dynamics::Skeleton*)mBodyNode1->getSkeleton())->getGenVels();
Eigen::VectorXd worldP2 = mBodyNode2->getWorldTransform() * mOffset2;
Eigen::VectorXd qDot2 = ((dynamics::Skeleton*)mBodyNode2->getSkeleton())->getGenVels();
_C.segment(_rowIndex, 3) = worldP1 - worldP2;
_CDot.segment(_rowIndex, 3) = mJ1 * qDot1 + mJ2 * qDot2;
}
示例10: convertSphericalToCartesianState
//! Convert spherical to Cartesian state.
Eigen::VectorXd convertSphericalToCartesianState( const Eigen::VectorXd& sphericalState )
{
// Create Cartesian state vector, initialized with zero entries.
Eigen::VectorXd convertedCartesianState = Eigen::VectorXd::Zero( 6 );
// Create local variables.
const double radius = sphericalState( 0 );
const double azimuthAngle = sphericalState( 1 );
const double elevationAngle = sphericalState( 2 );
// Precompute sine/cosine of angles, which has multiple usages, to save computation time.
const double cosineOfElevationAngle = std::cos( elevationAngle );
const double sineOfElevationAngle = std::sin( elevationAngle );
const double cosineOfAzimuthAngle = std::cos( azimuthAngle );
const double sineOfAzimuthAngle = std::sin( azimuthAngle );
// Set up transformation matrix for spherical to cylindrical conversion.
Eigen::MatrixXd transformationMatrixSphericalToCylindrical = Eigen::MatrixXd::Zero( 3, 3 );
transformationMatrixSphericalToCylindrical( 0, 0 ) = cosineOfElevationAngle;
transformationMatrixSphericalToCylindrical( 0, 2 ) = -sineOfElevationAngle;
transformationMatrixSphericalToCylindrical( 1, 1 ) = 1.0;
transformationMatrixSphericalToCylindrical( 2, 0 ) = sineOfElevationAngle;
transformationMatrixSphericalToCylindrical( 2, 2 ) = cosineOfElevationAngle;
// Set up transformation matrix for cylindrical to Cartesian conversion.
Eigen::MatrixXd transformationMatrixCylindricalToCartesian = Eigen::MatrixXd::Zero( 3, 3 );
transformationMatrixCylindricalToCartesian( 0, 0 ) = cosineOfAzimuthAngle;
transformationMatrixCylindricalToCartesian( 0, 1 ) = -sineOfAzimuthAngle;
transformationMatrixCylindricalToCartesian( 1, 0 ) = sineOfAzimuthAngle;
transformationMatrixCylindricalToCartesian( 1, 1 ) = cosineOfAzimuthAngle;
transformationMatrixCylindricalToCartesian( 2, 2 ) = 1.0;
// Compute transformation matrix for spherical to Cartesian conversion.
const Eigen::MatrixXd transformationMatrixSphericalToCartesian
= transformationMatrixCylindricalToCartesian
* transformationMatrixSphericalToCylindrical;
// Perform transformation of position coordinates.
convertedCartesianState( 0 ) = radius * cosineOfAzimuthAngle * cosineOfElevationAngle;
convertedCartesianState( 1 ) = radius * sineOfAzimuthAngle * cosineOfElevationAngle;
convertedCartesianState( 2 ) = radius * sineOfElevationAngle;
// Perform transformation of velocity vector.
convertedCartesianState.segment( 3, 3 ) =
transformationMatrixSphericalToCartesian * sphericalState.segment( 3, 3 );
// Return Cartesian state vector.
return convertedCartesianState;
}
示例11: inertialParametersVectorToUndirectedTreeLoop
void inertialParametersVectorToUndirectedTreeLoop(const Eigen::VectorXd & parameters_vector,
UndirectedTree & undirected_tree)
{
for(int i=0; i < (int)undirected_tree.getNrOfLinks(); i++ ) {
undirected_tree.getLink(i,false)->setInertia(deVectorize(parameters_vector.segment(i*10,10)));
}
}
示例12: s
/**
* Performs eigenvector decomposition of an affinity matrix
*
* @param data the affinity matrix
* @param numDims the number of dimensions to consider when clustering
*/
SpectralClustering::SpectralClustering(Eigen::MatrixXd& data, int numDims):
mNumDims(numDims),
mNumClusters(0)
{
Eigen::MatrixXd Deg = Eigen::MatrixXd::Zero(data.rows(),data.cols());
// calc normalised laplacian
for ( int i=0; i < data.cols(); i++) {
Deg(i,i)=1/(sqrt((data.row(i).sum())) );
}
Eigen::MatrixXd Lapla = Deg * data * Deg;
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> s(Lapla, true);
Eigen::VectorXd val = s.eigenvalues();
Eigen::MatrixXd vec = s.eigenvectors();
//sort eigenvalues/vectors
int n = data.cols();
for (int i = 0; i < n - 1; ++i) {
int k;
val.segment(i, n - i).maxCoeff(&k);
if (k > 0) {
std::swap(val[i], val[k + i]);
vec.col(i).swap(vec.col(k + i));
}
}
//choose the number of eigenvectors to consider
if (mNumDims < vec.cols()) {
mEigenVectors = vec.block(0,0,vec.rows(),mNumDims);
} else {
mEigenVectors = vec;
}
}
示例13: evaluateListOfFunctions
//! Function to evaluate a set of double and vector-returning functions and concatenate the results.
Eigen::VectorXd evaluateListOfFunctions(
const std::vector< boost::function< double( ) > >& doubleFunctionList,
const std::vector< std::pair< boost::function< Eigen::VectorXd( ) >, int > > vectorFunctionList,
const int totalSize)
{
Eigen::VectorXd variableList = Eigen::VectorXd::Zero( totalSize );
int currentIndex = 0;
for( unsigned int i = 0; i < doubleFunctionList.size( ); i++ )
{
variableList( i ) = doubleFunctionList.at( i )( );
currentIndex++;
}
for( unsigned int i = 0; i < vectorFunctionList.size( ); i++ )
{
variableList.segment( currentIndex, vectorFunctionList.at( i ).second ) =
vectorFunctionList.at( i ).first( );
currentIndex += vectorFunctionList.at( i ).second;
}
// Check consistency with input
if( currentIndex != totalSize )
{
std::string errorMessage = "Error when evaluating lists of functions, sizes are inconsistent: " +
boost::lexical_cast< std::string >( currentIndex ) + " and " +
boost::lexical_cast< std::string >( totalSize );
throw std::runtime_error( errorMessage );
}
return variableList;
}
示例14: inertialParametersVectorLoop
void inertialParametersVectorLoop(const UndirectedTree & undirected_tree,
Eigen::VectorXd & parameters_vector)
{
for(int i=0; i < (int)undirected_tree.getNrOfLinks(); i++ ) {
parameters_vector.segment(i*10,10) = Vectorize(undirected_tree.getLink(i)->getInertia());
}
}
示例15: operator
bool operator() (
Eigen::VectorXd& newx,
const Eigen::VectorXd& x,
const Eigen::VectorXd& g,
double step_size) {
newx.noalias() = x - step_size * g;
for (ssize_t n = 0; n < newx.size(); n += 3)
newx.segment (n,3).normalize();
return newx != x;
}