當前位置: 首頁>>代碼示例>>C++>>正文


C++ VectorXd::cwiseMax方法代碼示例

本文整理匯總了C++中eigen::VectorXd::cwiseMax方法的典型用法代碼示例。如果您正苦於以下問題:C++ VectorXd::cwiseMax方法的具體用法?C++ VectorXd::cwiseMax怎麽用?C++ VectorXd::cwiseMax使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在eigen::VectorXd的用法示例。


在下文中一共展示了VectorXd::cwiseMax方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。

示例1: omxSD

void omxSD(GradientOptimizerContext &rf)
{
	int maxIter = rf.maxMajorIterations;
	if (maxIter == -1) maxIter = 50000;

	Eigen::VectorXd currEst(rf.numFree);
	rf.copyToOptimizer(currEst.data());

    int iter = 0;
	double priorSpeed = 1.0, shrinkage = 0.7;
    rf.setupSimpleBounds();
    rf.informOut = INFORM_UNINITIALIZED;

    {
	    int mode = 0;
	    rf.solFun(currEst.data(), &mode);
	    if (mode == -1) {
		    rf.informOut = INFORM_STARTING_VALUES_INFEASIBLE;
		    return;
	    }
    }
    double refFit = rf.getFit();

    rf.grad.resize(rf.numFree);

    fit_functional ff(rf);
    Eigen::VectorXd majorEst = currEst;

    while(++iter < maxIter && !isErrorRaised()) {
	    gradient_with_ref(rf.gradientAlgo, 1, rf.gradientIterations, rf.gradientStepSize,
			      ff, refFit, majorEst, rf.grad);

	    if (rf.verbose >= 3) mxPrintMat("grad", rf.grad);

        if(rf.grad.norm() == 0)
        {
            rf.informOut = INFORM_CONVERGED_OPTIMUM;
            if(rf.verbose >= 2) mxLog("After %i iterations, gradient achieves zero!", iter);
            break;
        }

        int retries = 300;
        double speed = std::min(priorSpeed, 1.0);
	double bestSpeed = speed;
	bool foundBetter = false;
	Eigen::VectorXd bestEst(majorEst.size());
	Eigen::VectorXd prevEst(majorEst.size());
	Eigen::VectorXd searchDir = rf.grad;
	searchDir /= searchDir.norm();
	prevEst.setConstant(nan("uninit"));
        while (--retries > 0 && !isErrorRaised()){
		Eigen::VectorXd nextEst = majorEst - speed * searchDir;
		nextEst = nextEst.cwiseMax(rf.solLB).cwiseMin(rf.solUB);

		if (nextEst == prevEst) break;
		prevEst = nextEst;

		rf.checkActiveBoxConstraints(nextEst);

		int mode = 0;
		double fit = rf.solFun(nextEst.data(), &mode);
		if (fit < refFit) {
			foundBetter = true;
			refFit = rf.getFit();
			bestSpeed = speed;
			bestEst = nextEst;
			break;
		}
		speed *= shrinkage;
        }

	if (false && foundBetter) {
		// In some tests, this did not help so it is not enabled.
		// It might be worth testing more.
		mxLog("trying larger step size");
		retries = 3;
		while (--retries > 0 && !isErrorRaised()){
			speed *= 1.01;
			Eigen::VectorXd nextEst = majorEst - speed * searchDir;
			nextEst = nextEst.cwiseMax(rf.solLB).cwiseMin(rf.solUB);
			rf.checkActiveBoxConstraints(nextEst);
			int mode = 0;
			double fit = rf.solFun(nextEst.data(), &mode);
			if (fit < refFit) {
				foundBetter = true;
				refFit = rf.getFit();
				bestSpeed = speed;
				bestEst = nextEst;
			}
		}
	}

        if (!foundBetter) {
            rf.informOut = INFORM_CONVERGED_OPTIMUM;
            if(rf.verbose >= 2) mxLog("After %i iterations, cannot find better estimation along the gradient direction", iter);
            break;
        }

	if (rf.verbose >= 2) mxLog("major fit %f bestSpeed %g", refFit, bestSpeed);
	majorEst = bestEst;
//.........這裏部分代碼省略.........
開發者ID:,項目名稱:,代碼行數:101,代碼來源:


注:本文中的eigen::VectorXd::cwiseMax方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。