本文整理匯總了C++中eigen::VectorXd::resize方法的典型用法代碼示例。如果您正苦於以下問題:C++ VectorXd::resize方法的具體用法?C++ VectorXd::resize怎麽用?C++ VectorXd::resize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類eigen::VectorXd
的用法示例。
在下文中一共展示了VectorXd::resize方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: toEigen
bool toEigen(const yarp::sig::Vector & vec_yrp, Eigen::VectorXd & vec_eigen)
{
if( vec_yrp.size() != vec_eigen.size() ) { vec_eigen.resize(vec_yrp.size()); }
if( memcpy(vec_eigen.data(),vec_yrp.data(),sizeof(double)*vec_eigen.size()) != NULL ) {
return true;
} else {
return false;
}
}
示例2: GetBoundingBox
void GetBoundingBox(const Eigen::MatrixXd& data, Eigen::VectorXd& minCorner, Eigen::VectorXd& maxCorner)
{
assert(data.cols() > 0);
minCorner.resize(data.rows());
maxCorner.resize(data.rows());
for(unsigned int coordinate = 0; coordinate < data.rows(); ++coordinate)
{
minCorner[coordinate] = std::numeric_limits<double>::max();
maxCorner[coordinate] = std::numeric_limits<double>::min();
for(unsigned int pointId = 0; pointId < data.cols(); ++pointId)
{
if(data(coordinate, pointId) > maxCorner(coordinate))
{
maxCorner(coordinate) = data(coordinate, pointId);
}
if(data(coordinate, pointId) < minCorner(coordinate))
{
minCorner(coordinate) = data(coordinate, pointId);
}
}
}
}
示例3: main
int main(int argc, char** argv) {
ros::init(argc, argv, "joint_to_cart");
ros::NodeHandle nh;
ros::NodeHandle _nh("~");
mRobot = new RTKRobotArm(true);
if(!mRobot->initialize(_nh)) {
ROS_ERROR("Error while loading robot");
return 1;
}
if(!parseParams(_nh)) {
ROS_ERROR("Errors while parsing arguments.");
return 1;
}
numdof = mRobot->numdof;
read_torque.resize(numdof);
read_jpos.resize(numdof);
ee_ft.resize(6);
pub_pose = nh.advertise<geometry_msgs::PoseStamped>(output_cart_pose, 3);
pub_ft = nh.advertise<geometry_msgs::WrenchStamped>(output_cart_ft, 3);
ros::Subscriber sub = nh.subscribe<sensor_msgs::JointState>(input_joint_topic, 10, jointStateCallback,ros::TransportHints().tcpNoDelay());
ros::Subscriber sub_ft = nh.subscribe<geometry_msgs::WrenchStamped>("/right_arm_ft_sensor/wrench", 10, sensorFTCallback, ros::TransportHints().tcpNoDelay());
ROS_INFO("Node started");
ros::spin();
return 0;
}
示例4: solve_for_best_gamma
void LiftingLine::solve_for_best_gamma(double cL)
{
int matsize = this->segments.size() + 1;
Eigen::MatrixXd matrix;
Eigen::VectorXd rhs;
Eigen::VectorXd result;
matrix.resize(matsize, matsize);
matrix.setZero();
rhs.resize(matsize);
rhs.setZero();
result.resize(matsize);
result.setZero();
// adding the main min-function
for (int i = 0; i < (matsize - 1); i++)
{
for (int j = 0; j < (matsize - 1); j++)
{
matrix(i, j) += this->segments[i].b() * this->segments[j].ind_influence(this->segments[i]);
matrix(i, j) += this->segments[j].b() * this->segments[i].ind_influence(this->segments[j]);
}
// adding lagrange multiplicator
matrix(i, matsize - 1) += this->segments[i].lift_factor;
}
for (int i = 0; i < (matsize -1); i++)
{
matrix(matsize - 1, i) += this->segments[i].lift_factor;
}
rhs(matsize - 1) += cL;
result = matrix.fullPivHouseholderQr().solve(rhs);
for (int i = 0; i < matsize - 1; i++)
{
this->segments[i].best_gamma = result[i];
}
}
示例5: parse_rhs
// Parse right hand side arguments for a matlab mex function.
//
// Inputs:
// nrhs number of right hand side arguments
// prhs pointer to right hand side arguments
// Outputs:
// V n by dim list of mesh vertex positions
// F m by dim list of mesh face indices
// s 1 by dim bone source vertex position
// d 1 by dim bone dest vertex position
// "Throws" matlab errors if dimensions are not sane.
void parse_rhs(
const int nrhs,
const mxArray *prhs[],
Eigen::MatrixXd & V,
Eigen::MatrixXi & F,
Eigen::VectorXd & s,
Eigen::VectorXd & d)
{
using namespace std;
if(nrhs < 4)
{
mexErrMsgTxt("nrhs < 4");
}
const int dim = mxGetN(prhs[0]);
if(dim != 3)
{
mexErrMsgTxt("Mesh vertex list must be #V by 3 list of vertex positions");
}
if(dim != (int)mxGetN(prhs[1]))
{
mexErrMsgTxt("Mesh facet size must equal dimension");
}
if(dim != (int)mxGetN(prhs[2]))
{
mexErrMsgTxt("Source dim must equal vertex dimension");
}
if(dim != (int)mxGetN(prhs[3]))
{
mexErrMsgTxt("Dest dim must equal vertex dimension");
}
// set number of mesh vertices
const int n = mxGetM(prhs[0]);
// set vertex position pointers
double * Vp = mxGetPr(prhs[0]);
// set number of faces
const int m = mxGetM(prhs[1]);
// set face index list pointer
double * Fp = mxGetPr(prhs[1]);
// set source and dest pointers
double * sp = mxGetPr(prhs[2]);
double * dp = mxGetPr(prhs[3]);
// resize output to transpose
V.resize(n,dim);
copy(Vp,Vp+n*dim,V.data());
// resize output to transpose
F.resize(m,dim);
// Q: Is this doing a cast?
// A: Yes.
copy(Fp,Fp+m*dim,F.data());
// http://stackoverflow.com/a/4461466/148668
transform(F.data(),F.data()+m*dim,F.data(),
bind2nd(std::plus<double>(),-1.0));
// resize output to transpose
s.resize(dim);
copy(sp,sp+dim,s.data());
d.resize(dim);
copy(dp,dp+dim,d.data());
}
示例6: computeJointImpedance
//TODO: Compute the joint impedance here. Conversion from cart_stiffness to joint_stiffness not implemented yet.
void computeJointImpedance(Eigen::VectorXd& joint_stiff, Eigen::VectorXd& joint_damp) {
if(joint_stiff.size() != numdof) {
joint_stiff.resize(numdof);
}
if(joint_damp.size() != numdof) {
joint_damp.resize(numdof);
}
for(int i=0; i<numdof; ++i) {
joint_stiff[i] = DEFAULT_JSTIFF;
joint_damp[i] = DEFAULT_JDAMP;
}
}
示例7:
segment_info(unsigned int nc) {
E.resize(6, nc);
E_tilde.resize(6, nc);
G.resize(nc);
M.resize(nc, nc);
EZ.resize(nc);
E.setZero();
E_tilde.setZero();
M.setZero();
G.setZero();
EZ.setZero();
};
開發者ID:shakhimardanov,項目名稱:orocos_kdl_diamondback,代碼行數:12,代碼來源:chainidsolver_constraint_vereshchagin.hpp
示例8: D
segment_info(unsigned int nc):
D(0),nullspaceAccComp(0),constAccComp(0),biasAccComp(0),totalBias(0),u(0)
{
E.resize(6, nc);
E_tilde.resize(6, nc);
G.resize(nc);
M.resize(nc, nc);
EZ.resize(nc);
E.setZero();
E_tilde.setZero();
M.setZero();
G.setZero();
EZ.setZero();
};
示例9: main
int main(int argc, char *argv[])
{
using namespace Eigen;
using namespace std;
MatrixXd V;
MatrixXi F;
igl::readOFF(TUTORIAL_SHARED_PATH "/cheburashka.off",V,F);
// Plot the mesh
igl::opengl::glfw::Viewer viewer;
viewer.data().set_mesh(V, F);
viewer.data().show_lines = false;
viewer.callback_key_down = &key_down;
// One fixed point
b.resize(1,1);
// point on belly.
b<<2556;
bc.resize(1,1);
bc<<1;
// Construct Laplacian and mass matrix
SparseMatrix<double> L,M,Minv;
igl::cotmatrix(V,F,L);
igl::massmatrix(V,F,igl::MASSMATRIX_TYPE_VORONOI,M);
//M = (M/M.diagonal().maxCoeff()).eval();
igl::invert_diag(M,Minv);
// Bi-Laplacian
Q = L.transpose() * (Minv * L);
// Zero linear term
B = VectorXd::Zero(V.rows(),1);
// Lower and upper bound
lx = VectorXd::Zero(V.rows(),1);
ux = VectorXd::Ones(V.rows(),1);
// Equality constraint constrain solution to sum to 1
Beq.resize(1,1);
Beq(0) = 0.08;
Aeq = M.diagonal().sparseView().transpose();
// (Empty inequality constraints)
solve(viewer);
cout<<
"Press '.' to increase scale and resolve."<<endl<<
"Press ',' to decrease scale and resolve."<<endl;
viewer.launch();
}
示例10:
/** Return the vector from a back-substitution step that solves: Ux=b */
void CSparseMatrix::CholeskyDecomp::backsub(
const Eigen::VectorXd& b, Eigen::VectorXd& sol) const
{
ASSERT_(b.size() > 0);
sol.resize(b.size());
this->backsub(&b[0], &sol[0], b.size());
}
示例11: layoutByWord
void Locator::layoutByWord(const QHash<SymbolPath, SymbolData>& symbolWord,
QVector<QVector2D>& pos2D,
float sparseFactor,
float* radius,
QVector<float>* projRadius)
{
// get doc term matrix and radius of each data
SparseMatrix docTermMat;
Eigen::VectorXd radiusVec;
buildDocTermMat(symbolWord, docTermMat, radiusVec);
// use external radius data
if (projRadius)
{
radiusVec.resize(projRadius->size());
for (int i = 0; i < projRadius->size(); ++i)
radiusVec[i] = (*projRadius)[i];
}
// compute 2D position
m_wordLocator.setDocTermMat(docTermMat, radiusVec);
m_wordLocator.setUseTfIdfMeasure(false);
m_wordLocator.compute(sparseFactor);
//m_wordLocator.saveMatsToFile("H:/Programs/QtCreator/qt-creator_master/src/plugins/MyPlugin/CodeAtlas/codeData.m");
pos2D = m_wordLocator.getOri2DPositions();
if (radius)
*radius = m_wordLocator.getOri2DRadius() + 0.1f;
}
示例12: buildDocTermMat
void Locator::buildDocTermMat(const QHash<SymbolPath, SymbolData>& symbolWordList,
SparseMatrix& docTermMat,
Eigen::VectorXd& radiusVec)
{
int nSymbols = symbolWordList.size();
int nWords = SymbolWordAttr::totalWords();
QVector<float> wordCountPerDoc(nSymbols,0.f); // total number of words for each doc
QVector<float> docCountPerWord(nWords ,0.f); // total number of doc for each word
docTermMat = SparseMatrix(nSymbols, nWords);
radiusVec.resize(nSymbols);
QHash<SymbolPath, SymbolData>::ConstIterator pSymbol;
int ithSymbol = 0;
for (pSymbol = symbolWordList.begin();
pSymbol != symbolWordList.end(); ++pSymbol, ++ithSymbol)
{
const SymbolData& item = pSymbol.value();
wordCountPerDoc[ithSymbol] = item.getTotalWordCount();
QMap<int,float>::ConstIterator pWord;
for (pWord = item.m_wordWeightMap.begin();
pWord != item.m_wordWeightMap.end(); ++pWord)
{
int wordId = pWord.key();
float wordCount = pWord.value();
docCountPerWord[wordId] += 1;
docTermMat.insert(ithSymbol, wordId) = wordCount;
}
radiusVec(ithSymbol) = item.getRadius();
}
docTermMat.makeCompressed();
}
示例13: evaluateDerivative
//==============================================================================
void Spline::evaluateDerivative(
double _t, int _derivative, Eigen::VectorXd& _tangentVector) const
{
if (mSegments.empty())
throw std::logic_error("Unable to evaluate empty trajectory.");
if (_derivative < 1)
throw std::logic_error("Derivative must be positive.");
const auto targetSegmentInfo = getSegmentForTime(_t);
const auto& targetSegment = mSegments[targetSegmentInfo.first];
const auto evaluationTime = _t - targetSegmentInfo.second;
// Return zero for higher-order derivatives.
if (_derivative < targetSegment.mCoefficients.cols())
{
// TODO: We should transform this into the body frame using the adjoint
// transformation.
_tangentVector = evaluatePolynomial(
targetSegment.mCoefficients, evaluationTime, _derivative);
}
else
{
_tangentVector.resize(mStateSpace->getDimension());
_tangentVector.setZero();
}
}
示例14: getParameterVectorSelected
void Parameterizable::getParameterVectorSelected(Eigen::VectorXd& values, bool normalized) const
{
Eigen::VectorXd all_values;
getParameterVectorAll(all_values);
values.resize(getParameterVectorSelectedSize());
// We cannot do this with Block, because regions might not be contiguous
int ii = 0;
for (int all_ii=0; all_ii<selected_mask_.size(); all_ii++)
if (selected_mask_[all_ii]>0)
values[ii++] = all_values[all_ii];
if (normalized)
{
VectorXd min_vec, max_vec;
getParameterVectorSelectedMinMax(min_vec, max_vec);
VectorXd range = (max_vec.array()-min_vec.array());
for (int ii=0; ii<values.size(); ii++)
{
if (range[ii]>0)
{
values[ii] = (values[ii]-min_vec[ii])/range[ii];
}
else
{
if (abs(max_vec[ii])>0)
values[ii] = values[ii]/abs(2*max_vec[ii]);
}
}
}
}
示例15: ConjugateGradientSolve
bool BlockSparseMatrix::ConjugateGradientSolve(const Eigen::VectorXd& rhs, Eigen::VectorXd& sol)
{
//sol = mMatrix.llt().solve(rhs);
return LltSolve(rhs, sol);
MatrixSolver* solver = new PCGSolver();
int vectorLength = static_cast<int>(rhs.size());
double* result = new double[vectorLength];
double* rhsData = new double[vectorLength];
memcpy(rhsData, rhs.data(), vectorLength * sizeof(double));
if (mbCSRDirty)
{
mCSREquivalent.ConvertFromBlockSparseMatrix(*this);
mbCSRDirty = false;
}
solver->SetMatrix(&mCSREquivalent);
solver->SetRHS(rhsData);
solver->Solve(result, true);
sol.resize(vectorLength);
for (int i = 0; i < vectorLength; ++i)
sol[i] = result[i];
delete[] rhsData;
delete[] result;
delete solver;
return true;
}