當前位置: 首頁>>代碼示例>>C++>>正文


C++ VectorXd::cwiseSqrt方法代碼示例

本文整理匯總了C++中eigen::VectorXd::cwiseSqrt方法的典型用法代碼示例。如果您正苦於以下問題:C++ VectorXd::cwiseSqrt方法的具體用法?C++ VectorXd::cwiseSqrt怎麽用?C++ VectorXd::cwiseSqrt使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在eigen::VectorXd的用法示例。


在下文中一共展示了VectorXd::cwiseSqrt方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。

示例1: marginalize


//.........這裏部分代碼省略.........
    TicToc t_summing;
    Eigen::MatrixXd A(pos, pos);
    Eigen::VectorXd b(pos);
    A.setZero();
    b.setZero();
    /*
    for (auto it : factors)
    {
        for (int i = 0; i < static_cast<int>(it->parameter_blocks.size()); i++)
        {
            int idx_i = parameter_block_idx[reinterpret_cast<long>(it->parameter_blocks[i])];
            int size_i = localSize(parameter_block_size[reinterpret_cast<long>(it->parameter_blocks[i])]);
            Eigen::MatrixXd jacobian_i = it->jacobians[i].leftCols(size_i);
            for (int j = i; j < static_cast<int>(it->parameter_blocks.size()); j++)
            {
                int idx_j = parameter_block_idx[reinterpret_cast<long>(it->parameter_blocks[j])];
                int size_j = localSize(parameter_block_size[reinterpret_cast<long>(it->parameter_blocks[j])]);
                Eigen::MatrixXd jacobian_j = it->jacobians[j].leftCols(size_j);
                if (i == j)
                    A.block(idx_i, idx_j, size_i, size_j) += jacobian_i.transpose() * jacobian_j;
                else
                {
                    A.block(idx_i, idx_j, size_i, size_j) += jacobian_i.transpose() * jacobian_j;
                    A.block(idx_j, idx_i, size_j, size_i) = A.block(idx_i, idx_j, size_i, size_j).transpose();
                }
            }
            b.segment(idx_i, size_i) += jacobian_i.transpose() * it->residuals;
        }
    }
    ROS_INFO("summing up costs %f ms", t_summing.toc());
    */
    //multi thread


    TicToc t_thread_summing;
    pthread_t tids[NUM_THREADS];
    ThreadsStruct threadsstruct[NUM_THREADS];
    int i = 0;
    for (auto it : factors)
    {
        threadsstruct[i].sub_factors.push_back(it);
        i++;
        i = i % NUM_THREADS;
    }
    for (int i = 0; i < NUM_THREADS; i++)
    {
        TicToc zero_matrix;
        threadsstruct[i].A = Eigen::MatrixXd::Zero(pos,pos);
        threadsstruct[i].b = Eigen::VectorXd::Zero(pos);
        threadsstruct[i].parameter_block_size = parameter_block_size;
        threadsstruct[i].parameter_block_idx = parameter_block_idx;
        int ret = pthread_create( &tids[i], NULL, ThreadsConstructA ,(void*)&(threadsstruct[i]));
        if (ret != 0)
        {
            ROS_WARN("pthread_create error");
            ROS_BREAK();
        }
    }
    for( int i = NUM_THREADS - 1; i >= 0; i--)  
    {
        pthread_join( tids[i], NULL ); 
        A += threadsstruct[i].A;
        b += threadsstruct[i].b;
    }
    //ROS_DEBUG("thread summing up costs %f ms", t_thread_summing.toc());
    //ROS_INFO("A diff %f , b diff %f ", (A - tmp_A).sum(), (b - tmp_b).sum());


    //TODO
    Eigen::MatrixXd Amm = 0.5 * (A.block(0, 0, m, m) + A.block(0, 0, m, m).transpose());
    Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> saes(Amm);

    //ROS_ASSERT_MSG(saes.eigenvalues().minCoeff() >= -1e-4, "min eigenvalue %f", saes.eigenvalues().minCoeff());

    Eigen::MatrixXd Amm_inv = saes.eigenvectors() * Eigen::VectorXd((saes.eigenvalues().array() > eps).select(saes.eigenvalues().array().inverse(), 0)).asDiagonal() * saes.eigenvectors().transpose();
    //printf("error1: %f\n", (Amm * Amm_inv - Eigen::MatrixXd::Identity(m, m)).sum());

    Eigen::VectorXd bmm = b.segment(0, m);
    Eigen::MatrixXd Amr = A.block(0, m, m, n);
    Eigen::MatrixXd Arm = A.block(m, 0, n, m);
    Eigen::MatrixXd Arr = A.block(m, m, n, n);
    Eigen::VectorXd brr = b.segment(m, n);
    A = Arr - Arm * Amm_inv * Amr;
    b = brr - Arm * Amm_inv * bmm;

    Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> saes2(A);
    Eigen::VectorXd S = Eigen::VectorXd((saes2.eigenvalues().array() > eps).select(saes2.eigenvalues().array(), 0));
    Eigen::VectorXd S_inv = Eigen::VectorXd((saes2.eigenvalues().array() > eps).select(saes2.eigenvalues().array().inverse(), 0));

    Eigen::VectorXd S_sqrt = S.cwiseSqrt();
    Eigen::VectorXd S_inv_sqrt = S_inv.cwiseSqrt();

    linearized_jacobians = S_sqrt.asDiagonal() * saes2.eigenvectors().transpose();
    linearized_residuals = S_inv_sqrt.asDiagonal() * saes2.eigenvectors().transpose() * b;
    //std::cout << A << std::endl
    //          << std::endl;
    //std::cout << linearized_jacobians << std::endl;
    //printf("error2: %f %f\n", (linearized_jacobians.transpose() * linearized_jacobians - A).sum(),
    //      (linearized_jacobians.transpose() * linearized_residuals - b).sum());
}
開發者ID:JianCui1992,項目名稱:VINS-Mono,代碼行數:101,代碼來源:marginalization_factor.cpp


注:本文中的eigen::VectorXd::cwiseSqrt方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。