cols_condense()
采用一个规范对象,并通过将默认列类型设置为最常见的类型并仅列出具有不同类型的列来压缩其定义。
spec()
从 readr 创建的 tibble 中提取完整的列规范。
也可以看看
其他解析器:col_skip()
, cols()
, parse_datetime()
, parse_factor()
, parse_guess()
, parse_logical()
, parse_number()
, parse_vector()
例子
df <- read_csv(readr_example("mtcars.csv"))
#> Rows: 32 Columns: 11
#> ── Column specification ──────────────────────────────────────────────────
#> Delimiter: ","
#> dbl (11): mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
s <- spec(df)
s
#> cols(
#> mpg = col_double(),
#> cyl = col_double(),
#> disp = col_double(),
#> hp = col_double(),
#> drat = col_double(),
#> wt = col_double(),
#> qsec = col_double(),
#> vs = col_double(),
#> am = col_double(),
#> gear = col_double(),
#> carb = col_double()
#> )
cols_condense(s)
#> cols(
#> .default = col_double()
#> )
相关用法
- R readr spec_delim 生成列规范
- R readr datasource 创建源对象。
- R readr melt_delim 返回分隔文件中每个标记的熔化数据(包括 csv 和 tsv)
- R readr read_rds 读/写 RDS 文件。
- R readr read_lines 从文件中读取/写入行
- R readr parse_number 灵活地解析数字
- R readr read_fwf 将固定宽度文件读入 tibble
- R readr read_builtin 从包中读取内置对象
- R readr Tokenizers 分词器。
- R readr melt_table 返回空格分隔文件中每个标记的熔化数据
- R readr date_names 创建或检索日期名称
- R readr type_convert 重新转换现有 DataFrame 中的字符列
- R readr locale 创建语言环境
- R readr write_delim 将数据帧写入分隔文件
- R readr parse_vector 解析字符向量。
- R readr with_edition 暂时更改活动阅读器版本
- R readr read_delim 将分隔文件(包括 CSV 和 TSV)读入 tibble
- R readr format_delim 将 DataFrame 转换为分隔字符串
- R readr edition_get 检索当前活动版本
- R readr readr_example 获取 readr 示例的路径
- R readr melt_fwf 返回固定宽度文件中每个标记的熔化数据
- R readr count_fields 计算文件每一行中的字段数
- R readr read_table 将空格分隔的列读入 tibble
- R readr problems 检索解析问题
- R readr parse_guess 使用“最佳”类型进行解析
注:本文由纯净天空筛选整理自Hadley Wickham等大神的英文原创作品 Examine the column specifications for a data frame。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。