rename()
使用new_name = old_name
语法更改各个变量的名称; rename_with()
使用函数重命名列。
参数
- .data
-
数据帧、数据帧扩展(例如 tibble)或惰性数据帧(例如来自 dbplyr 或 dtplyr)。有关更多详细信息,请参阅下面的方法。
- ...
-
对于
rename()
: <tidy-select
> 使用new_name = old_name
重命名选定的变量。对于
rename_with()
:传递给.fn
的附加参数。 - .fn
-
用于转换所选
.cols
的函数。应返回与输入长度相同的字符向量。 - .cols
-
<
tidy-select
> 要重命名的列;默认为所有列。
方法
该函数是泛型函数,这意味着包可以为其他类提供实现(方法)。有关额外参数和行为差异,请参阅各个方法的文档。
加载的包中当前提供以下方法: dbplyr ( tbl_lazy
)、dplyr ( data.frame
) 。
例子
iris <- as_tibble(iris) # so it prints a little nicer
rename(iris, petal_length = Petal.Length)
#> # A tibble: 150 × 5
#> Sepal.Length Sepal.Width petal_length Petal.Width Species
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> # ℹ 140 more rows
# Rename using a named vector and `all_of()`
lookup <- c(pl = "Petal.Length", sl = "Sepal.Length")
rename(iris, all_of(lookup))
#> # A tibble: 150 × 5
#> sl Sepal.Width pl Petal.Width Species
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> # ℹ 140 more rows
# If your named vector might contain names that don't exist in the data,
# use `any_of()` instead
lookup <- c(lookup, new = "unknown")
try(rename(iris, all_of(lookup)))
#> Error in all_of(lookup) : Can't rename columns that don't exist.
#> ✖ Column `unknown` doesn't exist.
rename(iris, any_of(lookup))
#> # A tibble: 150 × 5
#> sl Sepal.Width pl Petal.Width Species
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> # ℹ 140 more rows
rename_with(iris, toupper)
#> # A tibble: 150 × 5
#> SEPAL.LENGTH SEPAL.WIDTH PETAL.LENGTH PETAL.WIDTH SPECIES
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> # ℹ 140 more rows
rename_with(iris, toupper, starts_with("Petal"))
#> # A tibble: 150 × 5
#> Sepal.Length Sepal.Width PETAL.LENGTH PETAL.WIDTH Species
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> # ℹ 140 more rows
rename_with(iris, ~ tolower(gsub(".", "_", .x, fixed = TRUE)))
#> # A tibble: 150 × 5
#> sepal_length sepal_width petal_length petal_width species
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> # ℹ 140 more rows
# If your renaming function uses `paste0()`, make sure to set
# `recycle0 = TRUE` to ensure that empty selections are recycled correctly
try(rename_with(
iris,
~ paste0("prefix_", .x),
starts_with("nonexistent")
))
#> Error in rename_with(iris, ~paste0("prefix_", .x), starts_with("nonexistent")) :
#> `.fn` must return a vector of length 0, not 1.
rename_with(
iris,
~ paste0("prefix_", .x, recycle0 = TRUE),
starts_with("nonexistent")
)
#> # A tibble: 150 × 5
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> # ℹ 140 more rows
相关用法
- R dplyr recode 重新编码值
- R dplyr relocate 更改列顺序
- R dplyr reframe 将每个组转换为任意数量的行
- R dplyr row_number 整数排名函数
- R dplyr rowwise 按行对输入进行分组
- R dplyr rows 操作单独的行
- R dplyr group_trim 修剪分组结构
- R dplyr slice 使用行的位置对行进行子集化
- R dplyr copy_to 将本地数据帧复制到远程src
- R dplyr sample_n 从表中采样 n 行
- R dplyr consecutive_id 为连续组合生成唯一标识符
- R dplyr band_members 乐队成员
- R dplyr mutate-joins 变异连接
- R dplyr nth 从向量中提取第一个、最后一个或第 n 个值
- R dplyr coalesce 找到第一个非缺失元素
- R dplyr group_split 按组分割 DataFrame
- R dplyr mutate 创建、修改和删除列
- R dplyr order_by 用于排序窗口函数输出的辅助函数
- R dplyr context 有关“当前”组或变量的信息
- R dplyr percent_rank 比例排名函数
- R dplyr starwars 星球大战人物
- R dplyr desc 降序
- R dplyr between 检测值落在指定范围内的位置
- R dplyr cumall 任何、全部和平均值的累积版本
- R dplyr group_map 对每个组应用一个函数
注:本文由纯净天空筛选整理自Hadley Wickham等大神的英文原创作品 Rename columns。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。