当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


R broom glance.nlrq 浏览 a(n) nlrq 对象


Glance 接受模型对象并返回 tibble::tibble(),其中仅包含一行模型摘要。摘要通常是拟合优度度量、残差假设检验的 p 值或模型收敛信息。

Glance 永远不会返返回自对建模函数的原始调用的信息。这包括建模函数的名称或传递给建模函数的任何参数。

Glance 不计算汇总度量。相反,它将这些计算外包给适当的方法并将结果收集在一起。有时拟合优度测量是不确定的。在这些情况下,该度量将报告为 NA

无论模型矩阵是否秩亏,Glance 都会返回相同的列数。如果是这样,则不再具有明确定义值的列中的条目将使用适当类型的 NA 进行填充。

用法

# S3 method for nlrq
glance(x, ...)

参数

x

quantreg::nlrq() 返回的 nlrq 对象。

...

附加参数。不曾用过。仅需要匹配通用签名。注意:拼写错误的参数将被吸收到 ... 中,并被忽略。如果拼写错误的参数有默认值,则将使用默认值。例如,如果您传递 conf.lvel = 0.9 ,所有计算将使用 conf.level = 0.95 进行。这里有两个异常:

  • tidy() 方法在提供 exponentiate 参数时会发出警告(如果该参数将被忽略)。

  • augment() 方法在提供 newdata 参数时会发出警告(如果该参数将被忽略)。

也可以看看

glance() , quantreg::nlrq()

其他 quantreg 整理器: augment.nlrq()augment.rqs()augment.rq()glance.rq()tidy.nlrq()tidy.rqs()tidy.rq()

恰好只有一行和一列的 tibble::tibble()

AIC

模型的 Akaike 信息准则。

BIC

模型的贝叶斯信息准则。

df.residual

剩余自由度。

logLik

模型的对数似然。 [stats::logLik()] 可能是一个有用的参考。

tau

分位数。

例子


# load modeling library
library(quantreg)

# build artificial data with multiplicative error
set.seed(1)
dat <- NULL
dat$x <- rep(1:25, 20)
dat$y <- SSlogis(dat$x, 10, 12, 2) * rnorm(500, 1, 0.1)

# fit the median using nlrq
mod <- nlrq(y ~ SSlogis(x, Asym, mid, scal),
  data = dat, tau = 0.5, trace = TRUE
)
#> 109.059 :   9.968027 11.947208  1.962113 
#> final  value 108.942725 
#> converged
#> lambda = 1 
#> 108.9427 :   9.958648 11.943273  1.967144 
#> final  value 108.490939 
#> stopped after 2 iterations
#> lambda = 0.9750984 
#> 108.4909 :   9.949430 11.987472  1.998607 
#> final  value 108.471416 
#> converged
#> lambda = 0.9999299 
#> 108.4714 :   9.94163 11.99077  1.99344 
#> final  value 108.471243 
#> converged
#> lambda = 1 
#> 108.4712 :   9.941008 11.990550  1.992921 
#> final  value 108.470935 
#> converged
#> lambda = 0.8621249 
#> 108.4709 :   9.942734 11.992773  1.993209 
#> final  value 108.470923 
#> converged
#> lambda = 0.9999613 
#> 108.4709 :   9.942629 11.992728  1.993136 
#> final  value 108.470919 
#> converged
#> lambda = 1 
#> 108.4709 :   9.942644 11.992737  1.993144 
#> final  value 108.470919 
#> converged
#> lambda = 1 
#> 108.4709 :   9.942644 11.992737  1.993144 
#> final  value 108.470919 
#> converged
#> lambda = 1 
#> 108.4709 :   9.942644 11.992737  1.993144 

# summarize model fit with tidiers
tidy(mod)
#> # A tibble: 3 × 5
#>   term  estimate std.error statistic p.value
#>   <chr>    <dbl>     <dbl>     <dbl>   <dbl>
#> 1 Asym      9.94    0.0841     118.        0
#> 2 mid      12.0     0.0673     178.        0
#> 3 scal      1.99    0.0248      80.3       0
glance(mod)
#> # A tibble: 1 × 5
#>     tau logLik      AIC   BIC df.residual
#>   <dbl> <logLik>  <dbl> <dbl>       <int>
#> 1   0.5 -429.0842  864.  877.         497
augment(mod)
#> # A tibble: 500 × 4
#>        x      y .fitted   .resid
#>    <int>  <dbl>   <dbl>    <dbl>
#>  1     1 0.0382  0.0399 -0.00171
#>  2     2 0.0682  0.0657  0.00250
#>  3     3 0.101   0.108  -0.00728
#>  4     4 0.209   0.177   0.0315 
#>  5     5 0.303   0.289   0.0137 
#>  6     6 0.435   0.469  -0.0332 
#>  7     7 0.796   0.751   0.0448 
#>  8     8 1.28    1.18    0.0982 
#>  9     9 1.93    1.81    0.118  
#> 10    10 2.61    2.67   -0.0671 
#> # ℹ 490 more rows

相关用法


注:本文由纯净天空筛选整理自大神的英文原创作品 Glance at a(n) nlrq object。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。