当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


R broom glance.factanal 浏览一个事实对象


Glance 接受模型对象并返回 tibble::tibble(),其中仅包含一行模型摘要。摘要通常是拟合优度度量、残差假设检验的 p 值或模型收敛信息。

Glance 永远不会返返回自对建模函数的原始调用的信息。这包括建模函数的名称或传递给建模函数的任何参数。

Glance 不计算汇总度量。相反,它将这些计算外包给适当的方法并将结果收集在一起。有时拟合优度测量是不确定的。在这些情况下,该度量将报告为 NA

无论模型矩阵是否秩亏,Glance 都会返回相同的列数。如果是这样,则不再具有明确定义值的列中的条目将使用适当类型的 NA 进行填充。

用法

# S3 method for factanal
glance(x, ...)

参数

x

stats::factanal() 创建的 factanal 对象。

...

附加参数。不曾用过。仅需要匹配通用签名。注意:拼写错误的参数将被吸收到 ... 中,并被忽略。如果拼写错误的参数有默认值,则将使用默认值。例如,如果您传递 conf.lvel = 0.9 ,所有计算将使用 conf.level = 0.95 进行。这里有两个异常:

  • tidy() 方法在提供 exponentiate 参数时会发出警告(如果该参数将被忽略)。

  • augment() 方法在提供 newdata 参数时会发出警告(如果该参数将被忽略)。

也可以看看

恰好只有一行和一列的 tibble::tibble()

converged

逻辑表明模型拟合过程是否成功并收敛。

df

模型使用的自由度。

method

用的是哪种方法。

n

观察总数。

n.factors

拟合因子的数量。

nobs

使用的观察数。

p.value

对应于检验统计量的 P 值。

statistic

检验统计量。

total.variance

所有因子所占方差的总累积比例。

例子


set.seed(123)

# generate data
library(dplyr)
library(purrr)

m1 <- tibble(
  v1 = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 4, 5, 6),
  v2 = c(1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 3, 4, 3, 3, 3, 4, 6, 5),
  v3 = c(3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 4, 6),
  v4 = c(3, 3, 4, 3, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 5, 6, 4),
  v5 = c(1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 6, 4, 5),
  v6 = c(1, 1, 1, 2, 1, 3, 3, 3, 4, 3, 1, 1, 1, 2, 1, 6, 5, 4)
)

# new data
m2 <- map_dfr(m1, rev)

# factor analysis objects
fit1 <- factanal(m1, factors = 3, scores = "Bartlett")
fit2 <- factanal(m1, factors = 3, scores = "regression")

# tidying the object
tidy(fit1)
#> # A tibble: 6 × 5
#>   variable uniqueness   fl1   fl2   fl3
#>   <chr>         <dbl> <dbl> <dbl> <dbl>
#> 1 v1           0.005  0.944 0.182 0.267
#> 2 v2           0.101  0.905 0.235 0.159
#> 3 v3           0.005  0.236 0.210 0.946
#> 4 v4           0.224  0.180 0.242 0.828
#> 5 v5           0.0843 0.242 0.881 0.286
#> 6 v6           0.005  0.193 0.959 0.196
tidy(fit2)
#> # A tibble: 6 × 5
#>   variable uniqueness   fl1   fl2   fl3
#>   <chr>         <dbl> <dbl> <dbl> <dbl>
#> 1 v1           0.005  0.944 0.182 0.267
#> 2 v2           0.101  0.905 0.235 0.159
#> 3 v3           0.005  0.236 0.210 0.946
#> 4 v4           0.224  0.180 0.242 0.828
#> 5 v5           0.0843 0.242 0.881 0.286
#> 6 v6           0.005  0.193 0.959 0.196

# augmented dataframe
augment(fit1)
#> # A tibble: 18 × 4
#>    .rownames   .fs1   .fs2   .fs3
#>    <chr>      <dbl>  <dbl>  <dbl>
#>  1 1         -0.904 -0.931  0.948
#>  2 2         -0.869 -0.933  0.935
#>  3 3         -0.908 -0.932  0.962
#>  4 4         -1.00  -0.253  0.818
#>  5 5         -0.904 -0.931  0.948
#>  6 6         -0.745  0.727 -0.788
#>  7 7         -0.710  0.725 -0.801
#>  8 8         -0.750  0.726 -0.774
#>  9 9         -0.808  1.40  -0.930
#> 10 10        -0.745  0.727 -0.788
#> 11 11         0.927 -0.931 -0.837
#> 12 12         0.963 -0.933 -0.849
#> 13 13         0.923 -0.932 -0.823
#> 14 14         0.829 -0.253 -0.967
#> 15 15         0.927 -0.931 -0.837
#> 16 16         0.422  2.05   1.29 
#> 17 17         1.47   1.29   0.545
#> 18 18         1.88   0.309  1.95 
augment(fit2)
#> # A tibble: 18 × 4
#>    .rownames   .fs1   .fs2   .fs3
#>    <chr>      <dbl>  <dbl>  <dbl>
#>  1 1         -0.897 -0.925  0.936
#>  2 2         -0.861 -0.927  0.924
#>  3 3         -0.901 -0.926  0.950
#>  4 4         -0.993 -0.251  0.809
#>  5 5         -0.897 -0.925  0.936
#>  6 6         -0.741  0.720 -0.784
#>  7 7         -0.706  0.718 -0.796
#>  8 8         -0.745  0.719 -0.770
#>  9 9         -0.803  1.39  -0.923
#> 10 10        -0.741  0.720 -0.784
#> 11 11         0.917 -0.925 -0.830
#> 12 12         0.952 -0.927 -0.842
#> 13 13         0.913 -0.926 -0.816
#> 14 14         0.820 -0.252 -0.958
#> 15 15         0.917 -0.925 -0.830
#> 16 16         0.426  2.04   1.28 
#> 17 17         1.46   1.29   0.548
#> 18 18         1.88   0.314  1.95 

# augmented dataframe (with new data)
augment(fit1, data = m2)
#> # A tibble: 18 × 10
#>    .rownames    v1    v2    v3    v4    v5    v6   .fs1   .fs2   .fs3
#>    <chr>     <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl>
#>  1 1             6     5     6     4     5     4 -0.904 -0.931  0.948
#>  2 2             5     6     4     6     4     5 -0.869 -0.933  0.935
#>  3 3             4     4     5     5     6     6 -0.908 -0.932  0.962
#>  4 4             3     3     1     1     1     1 -1.00  -0.253  0.818
#>  5 5             3     3     1     1     1     2 -0.904 -0.931  0.948
#>  6 6             3     3     1     2     1     1 -0.745  0.727 -0.788
#>  7 7             3     4     1     1     1     1 -0.710  0.725 -0.801
#>  8 8             3     3     1     1     1     1 -0.750  0.726 -0.774
#>  9 9             1     1     1     1     3     3 -0.808  1.40  -0.930
#> 10 10            1     2     1     1     3     4 -0.745  0.727 -0.788
#> 11 11            1     1     1     2     3     3  0.927 -0.931 -0.837
#> 12 12            1     2     1     1     3     3  0.963 -0.933 -0.849
#> 13 13            1     1     1     1     3     3  0.923 -0.932 -0.823
#> 14 14            1     1     3     3     1     1  0.829 -0.253 -0.967
#> 15 15            1     1     3     3     1     2  0.927 -0.931 -0.837
#> 16 16            1     1     3     4     1     1  0.422  2.05   1.29 
#> 17 17            1     2     3     3     1     1  1.47   1.29   0.545
#> 18 18            1     1     3     3     1     1  1.88   0.309  1.95 
augment(fit2, data = m2)
#> # A tibble: 18 × 10
#>    .rownames    v1    v2    v3    v4    v5    v6   .fs1   .fs2   .fs3
#>    <chr>     <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl>
#>  1 1             6     5     6     4     5     4 -0.897 -0.925  0.936
#>  2 2             5     6     4     6     4     5 -0.861 -0.927  0.924
#>  3 3             4     4     5     5     6     6 -0.901 -0.926  0.950
#>  4 4             3     3     1     1     1     1 -0.993 -0.251  0.809
#>  5 5             3     3     1     1     1     2 -0.897 -0.925  0.936
#>  6 6             3     3     1     2     1     1 -0.741  0.720 -0.784
#>  7 7             3     4     1     1     1     1 -0.706  0.718 -0.796
#>  8 8             3     3     1     1     1     1 -0.745  0.719 -0.770
#>  9 9             1     1     1     1     3     3 -0.803  1.39  -0.923
#> 10 10            1     2     1     1     3     4 -0.741  0.720 -0.784
#> 11 11            1     1     1     2     3     3  0.917 -0.925 -0.830
#> 12 12            1     2     1     1     3     3  0.952 -0.927 -0.842
#> 13 13            1     1     1     1     3     3  0.913 -0.926 -0.816
#> 14 14            1     1     3     3     1     1  0.820 -0.252 -0.958
#> 15 15            1     1     3     3     1     2  0.917 -0.925 -0.830
#> 16 16            1     1     3     4     1     1  0.426  2.04   1.28 
#> 17 17            1     2     3     3     1     1  1.46   1.29   0.548
#> 18 18            1     1     3     3     1     1  1.88   0.314  1.95 

相关用法


注:本文由纯净天空筛选整理自大神的英文原创作品 Glance at a(n) factanal object。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。