本文简要介绍
networkx.algorithms.connectivity.edge_kcomponents.EdgeComponentAuxGraph
的用法。用法:
class EdgeComponentAuxGraph
在图中查找所有k-edge-connected 组件的简单算法。
构造AuxillaryGraph(可能需要一些时间)允许在任意k 的线性时间内找到k-edge-ccs。
注意:
该实现基于[1]。这个想法是构建一个辅助图,可以在线性时间内提取k-edge-ccs。辅助图是在 操作中构造的,其中F是最大流的复杂度。查询组件需要额外的 操作。该算法对于大型图来说可能很慢,但它可以处理任意 k 并且适用于有向和无向输入。
k=1 的无向情况是完全连通的分量。 k=2 的无向情况正好是桥接组件。 k=1 的有向情况是完全强连通分量。
参考:
- 1
Wang, Tianhao, et al. (2015) A simple algorithm for finding all k-edge-connected components. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136264
例子:
>>> import itertools as it >>> from networkx.utils import pairwise >>> from networkx.algorithms.connectivity import EdgeComponentAuxGraph >>> # Build an interesting graph with multiple levels of k-edge-ccs >>> paths = [ ... (1, 2, 3, 4, 1, 3, 4, 2), # a 3-edge-cc (a 4 clique) ... (5, 6, 7, 5), # a 2-edge-cc (a 3 clique) ... (1, 5), # combine first two ccs into a 1-edge-cc ... (0,), # add an additional disconnected 1-edge-cc ... ] >>> G = nx.Graph() >>> G.add_nodes_from(it.chain(*paths)) >>> G.add_edges_from(it.chain(*[pairwise(path) for path in paths])) >>> # Constructing the AuxGraph takes about O(n ** 4) >>> aux_graph = EdgeComponentAuxGraph.construct(G) >>> # Once constructed, querying takes O(n) >>> sorted(map(sorted, aux_graph.k_edge_components(k=1))) [[0], [1, 2, 3, 4, 5, 6, 7]] >>> sorted(map(sorted, aux_graph.k_edge_components(k=2))) [[0], [1, 2, 3, 4], [5, 6, 7]] >>> sorted(map(sorted, aux_graph.k_edge_components(k=3))) [[0], [1, 2, 3, 4], [5], [6], [7]] >>> sorted(map(sorted, aux_graph.k_edge_components(k=4))) [[0], [1], [2], [3], [4], [5], [6], [7]]
辅助图主要用于k-edge-ccs,但它也可以通过优化搜索空间来加速k-edge-subgraphs的查询。
>>> import itertools as it >>> from networkx.utils import pairwise >>> from networkx.algorithms.connectivity import EdgeComponentAuxGraph >>> paths = [ ... (1, 2, 4, 3, 1, 4), ... ] >>> G = nx.Graph() >>> G.add_nodes_from(it.chain(*paths)) >>> G.add_edges_from(it.chain(*[pairwise(path) for path in paths])) >>> aux_graph = EdgeComponentAuxGraph.construct(G) >>> sorted(map(sorted, aux_graph.k_edge_subgraphs(k=3))) [[1], [2], [3], [4]] >>> sorted(map(sorted, aux_graph.k_edge_components(k=3))) [[1, 4], [2], [3]]
相关用法
- Python NetworkX negative_edge_cycle用法及代码示例
- Python NetworkX voronoi_cells用法及代码示例
- Python NetworkX numerical_edge_match用法及代码示例
- Python NetworkX inverse_line_graph用法及代码示例
- Python NetworkX LFR_benchmark_graph用法及代码示例
- Python NetworkX write_graph6用法及代码示例
- Python NetworkX DiGraph.__contains__用法及代码示例
- Python NetworkX average_degree_connectivity用法及代码示例
- Python NetworkX eulerian_circuit用法及代码示例
- Python NetworkX single_source_dijkstra_path_length用法及代码示例
- Python NetworkX from_dict_of_dicts用法及代码示例
- Python NetworkX weisfeiler_lehman_subgraph_hashes用法及代码示例
- Python NetworkX transitive_closure_dag用法及代码示例
- Python NetworkX intersection用法及代码示例
- Python NetworkX MultiGraph.size用法及代码示例
- Python NetworkX Graph.size用法及代码示例
- Python NetworkX from_scipy_sparse_array用法及代码示例
- Python NetworkX local_and_global_consistency用法及代码示例
- Python NetworkX number_of_selfloops用法及代码示例
- Python NetworkX single_source_bellman_ford用法及代码示例
- Python NetworkX all_simple_paths用法及代码示例
- Python NetworkX Graph.to_undirected用法及代码示例
- Python NetworkX numeric_assortativity_coefficient用法及代码示例
- Python NetworkX binomial_graph用法及代码示例
- Python NetworkX dedensify用法及代码示例
注:本文由纯净天空筛选整理自networkx.org大神的英文原创作品 networkx.algorithms.connectivity.edge_kcomponents.EdgeComponentAuxGraph。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。