networkx.algorithms.summarization.dedensify
的用法。用法:
dedensify(G, threshold, prefix=None, copy=True)
压缩 high-degree 节点周围的邻域
通过向 high-degree 节点(度数大于给定阈值的节点)添加汇总相同类型的多个边的压缩器节点,将边数减少到 high-degree 节点。去密化还具有减少high-degree 节点周围的边数的额外好处。该实现当前支持具有单一边类型的图。
- G: graph:
一个networkx图
- threshold: int:
被认为是高度节点的节点的最小度阈值。阈值必须大于或等于 2。
- prefix: str or None, optional (default: None):
表示压缩器节点的可选前缀
- copy: bool, optional (default: True):
指示是否应就地进行去致密化
- dedensified networkx graph:(图,集)
去密化图和压缩器节点集的 2 元组
参数:
返回:
注意:
根据[1]中的算法,通过将总结相同类型的多个边的压缩器节点添加到high-degree节点来压缩/解压缩高度节点周围的邻域,从而删除图中的边。去密化只会添加压缩器节点,这样做会减少给定图中的边总数。此实现当前支持具有单边类型的图。
参考:
- 1
Maccioni, A., & Abadi, D. J. (2016, August). Scalable pattern matching over compressed graphs via dedensification. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1755-1764). http://www.cs.umd.edu/~abadi/papers/graph-dedense.pdf
例子:
当这样做会导致更少的边时,去密化只会添加压缩器节点:
>>> original_graph = nx.DiGraph() >>> original_graph.add_nodes_from( ... ["1", "2", "3", "4", "5", "6", "A", "B", "C"] ... ) >>> original_graph.add_edges_from( ... [ ... ("1", "C"), ("1", "B"), ... ("2", "C"), ("2", "B"), ("2", "A"), ... ("3", "B"), ("3", "A"), ("3", "6"), ... ("4", "C"), ("4", "B"), ("4", "A"), ... ("5", "B"), ("5", "A"), ... ("6", "5"), ... ("A", "6") ... ] ... ) >>> c_graph, c_nodes = nx.dedensify(original_graph, threshold=2) >>> original_graph.number_of_edges() 15 >>> c_graph.number_of_edges() 14
一个去密化的有向图可以是“densified”来重建原始图:
>>> original_graph = nx.DiGraph() >>> original_graph.add_nodes_from( ... ["1", "2", "3", "4", "5", "6", "A", "B", "C"] ... ) >>> original_graph.add_edges_from( ... [ ... ("1", "C"), ("1", "B"), ... ("2", "C"), ("2", "B"), ("2", "A"), ... ("3", "B"), ("3", "A"), ("3", "6"), ... ("4", "C"), ("4", "B"), ("4", "A"), ... ("5", "B"), ("5", "A"), ... ("6", "5"), ... ("A", "6") ... ] ... ) >>> c_graph, c_nodes = nx.dedensify(original_graph, threshold=2) >>> # re-densifies the compressed graph into the original graph >>> for c_node in c_nodes: ... all_neighbors = set(nx.all_neighbors(c_graph, c_node)) ... out_neighbors = set(c_graph.neighbors(c_node)) ... for out_neighbor in out_neighbors: ... c_graph.remove_edge(c_node, out_neighbor) ... in_neighbors = all_neighbors - out_neighbors ... for in_neighbor in in_neighbors: ... c_graph.remove_edge(in_neighbor, c_node) ... for out_neighbor in out_neighbors: ... c_graph.add_edge(in_neighbor, out_neighbor) ... c_graph.remove_node(c_node) ... >>> nx.is_isomorphic(original_graph, c_graph) True
相关用法
- Python NetworkX descendants_at_distance用法及代码示例
- Python NetworkX degree_assortativity_coefficient用法及代码示例
- Python NetworkX descendants用法及代码示例
- Python NetworkX degree_mixing_matrix用法及代码示例
- Python NetworkX degrees用法及代码示例
- Python NetworkX degree_pearson_correlation_coefficient用法及代码示例
- Python NetworkX density用法及代码示例
- Python NetworkX draw_networkx_edge_labels用法及代码示例
- Python NetworkX double_edge_swap用法及代码示例
- Python NetworkX draw用法及代码示例
- Python NetworkX dag_longest_path_length用法及代码示例
- Python NetworkX dfs_successors用法及代码示例
- Python NetworkX draw_planar用法及代码示例
- Python NetworkX draw_circular用法及代码示例
- Python NetworkX dijkstra_path_length用法及代码示例
- Python NetworkX draw_spectral用法及代码示例
- Python NetworkX dijkstra_path用法及代码示例
- Python NetworkX directed_configuration_model用法及代码示例
- Python NetworkX draw_random用法及代码示例
- Python NetworkX directed_joint_degree_graph用法及代码示例
- Python NetworkX draw_shell用法及代码示例
- Python NetworkX difference用法及代码示例
- Python NetworkX disjoint_union用法及代码示例
- Python NetworkX draw_networkx用法及代码示例
- Python NetworkX dfs_predecessors用法及代码示例
注:本文由纯净天空筛选整理自networkx.org大神的英文原创作品 networkx.algorithms.summarization.dedensify。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。