Matplotlib是Python中令人惊叹的可视化库,用于数组的二维图。 Matplotlib是一个基于NumPy数组的多平台数据可视化库,旨在与更广泛的SciPy堆栈配合使用。
matplotlib.colors.PowerNor
matplotlib.colors.PowerNorm类属于matplotlib.colors模块。 matplotlib.colors模块用于将颜色或数字参数转换为RGBA或RGB。此模块用于将数字映射到颜色或以一维颜色数组(也称为colormap)进行颜色规格转换。
matplotlib.colors.PowerNorm类用于将值线性映射到-的范围,然后在该范围内应用power-law归一化。它的基类是matplotlib.colors.Normalize。
该类的方法:
- 逆(自我,价值):此方法返回颜色图的反转值。
范例1:
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import numpy as np
from numpy.random import multivariate_normal
# data for reproducibality
data = np.vstack([
multivariate_normal([10, 10],
[[3, 2],
[2, 3]],
size = 100000),
multivariate_normal([30, 20],
[[2, 3],
[1, 3]],
size = 1000)
])
gammas_array = [0.9, 0.6, 0.4]
figure, axs = plt.subplots(nrows = 2,
ncols = 2)
axs[0, 0].set_title('Linear normalization')
axs[0, 0].hist2d(data[:, 0],
data[:, 1],
bins = 100)
for ax, gamma in zip(axs.flat[1:],
gammas_array):
ax.set_title(r'Power law $(\gamma =% 1.1f)$' % gamma)
ax.hist2d(data[:, 0],
data[:, 1],
bins = 100,
norm = mcolors.PowerNorm(gamma))
figure.tight_layout()
plt.show()
输出:
范例2:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as colors
max_N = 100
A, B = np.mgrid[-3:3:complex(0, max_N),
-2:2:complex(0, max_N)]
# PowerNorm:using power-law
# trend in X
A, B = np.mgrid[0:3:complex(0, max_N),
0:2:complex(0, max_N)]
X1 = (1 + np.sin(B * 10.)) * A**(2.)
figure, axes = plt.subplots(2, 1)
pcm = axes[0].pcolormesh(A, B, X1,
norm = colors.PowerNorm(gamma = 1./2.),
cmap ='PuBu_r')
figure.colorbar(pcm, ax = axes[0],
extend ='max')
pcm = axes[1].pcolormesh(A, B, X1,
cmap ='PuBu_r')
figure.colorbar(pcm, ax = axes[1],
extend ='max')
plt.show()
输出:
相关用法
- Python Matplotlib.ticker.MultipleLocator用法及代码示例
- Python Matplotlib.gridspec.GridSpec用法及代码示例
- Python Matplotlib.patches.CirclePolygon用法及代码示例
- Python Matplotlib.colors.Normalize用法及代码示例
注:本文由纯净天空筛选整理自RajuKumar19大神的英文原创作品 Matplotlib.colors.PowerNorm class in Python。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。