Matplotlib是Python中令人驚歎的可視化庫,用於數組的二維圖。 Matplotlib是一個基於NumPy數組的多平台數據可視化庫,旨在與更廣泛的SciPy堆棧配合使用。
matplotlib.colors.PowerNor
matplotlib.colors.PowerNorm類屬於matplotlib.colors模塊。 matplotlib.colors模塊用於將顏色或數字參數轉換為RGBA或RGB。此模塊用於將數字映射到顏色或以一維顏色數組(也稱為colormap)進行顏色規格轉換。
matplotlib.colors.PowerNorm類用於將值線性映射到-的範圍,然後在該範圍內應用power-law歸一化。它的基類是matplotlib.colors.Normalize。
該類的方法:
- 逆(自我,價值):此方法返回顏色圖的反轉值。
範例1:
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import numpy as np
from numpy.random import multivariate_normal
# data for reproducibality
data = np.vstack([
multivariate_normal([10, 10],
[[3, 2],
[2, 3]],
size = 100000),
multivariate_normal([30, 20],
[[2, 3],
[1, 3]],
size = 1000)
])
gammas_array = [0.9, 0.6, 0.4]
figure, axs = plt.subplots(nrows = 2,
ncols = 2)
axs[0, 0].set_title('Linear normalization')
axs[0, 0].hist2d(data[:, 0],
data[:, 1],
bins = 100)
for ax, gamma in zip(axs.flat[1:],
gammas_array):
ax.set_title(r'Power law $(\gamma =% 1.1f)$' % gamma)
ax.hist2d(data[:, 0],
data[:, 1],
bins = 100,
norm = mcolors.PowerNorm(gamma))
figure.tight_layout()
plt.show()
輸出:
範例2:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as colors
max_N = 100
A, B = np.mgrid[-3:3:complex(0, max_N),
-2:2:complex(0, max_N)]
# PowerNorm:using power-law
# trend in X
A, B = np.mgrid[0:3:complex(0, max_N),
0:2:complex(0, max_N)]
X1 = (1 + np.sin(B * 10.)) * A**(2.)
figure, axes = plt.subplots(2, 1)
pcm = axes[0].pcolormesh(A, B, X1,
norm = colors.PowerNorm(gamma = 1./2.),
cmap ='PuBu_r')
figure.colorbar(pcm, ax = axes[0],
extend ='max')
pcm = axes[1].pcolormesh(A, B, X1,
cmap ='PuBu_r')
figure.colorbar(pcm, ax = axes[1],
extend ='max')
plt.show()
輸出:
相關用法
- Python Matplotlib.ticker.MultipleLocator用法及代碼示例
- Python Matplotlib.gridspec.GridSpec用法及代碼示例
- Python Matplotlib.patches.CirclePolygon用法及代碼示例
- Python Matplotlib.colors.Normalize用法及代碼示例
注:本文由純淨天空篩選整理自RajuKumar19大神的英文原創作品 Matplotlib.colors.PowerNorm class in Python。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。