当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


Python Matplotlib.colors.DivergingNorm用法及代码示例


Matplotlib是Python中令人惊叹的可视化库,用于数组的二维图。 Matplotlib是一个基于NumPy数组的多平台数据可视化库,旨在与更广泛的SciPy堆栈配合使用。

matplotlib.colors.DivergingNorm

matplotlib.colors.DivergingNorm类属于matplotlib.colors模块。 matplotlib.colors模块用于将颜色或数字参数转换为RGBA或RGB。此模块用于将数字映射到颜色或以一维颜色数组(也称为colormap)进行颜色规格转换。

matplotlib.colors.DivergingNorm类在围绕概念中心以不均匀或不相等的变化率映射数据时非常有用。例如,数据范围介于-2到2之间,以0为中心或mid-point。

用法: matplotlib.colors.DivergingNorm(vcenter, vmin, vmax)

参数:



  1. 虚拟中心:它接受一个浮点值,该值在规范化中定义0.5数据值。
  2. vmin:它是一个可选参数,它接受浮点值并在规范化中定义0.0数据值,默认为数据集的最小值。
  3. vmax:它是一个可选参数,它接受浮点值并在规范化中定义1.0数据值,默认为数据集的最大值。

范例1:

import numpy 
from matplotlib import pyplot as plt 
from matplotlib import colors 
  
  
# dummy data to plot 
x = numpy.linspace(0, 2*numpy.pi, 30) 
y = numpy.linspace(0, 2*numpy.pi, 20) 
[A, B] = numpy.meshgrid(x, y) 
Q = numpy.sin(A)*numpy.cos(B) 
  
fig = plt.figure() 
plt.ion() 
  
#  yellow to green to red  
# colormap 
plt.set_cmap('brg') 
  
ax = fig.add_subplot(1, 2, 1) 
plt.pcolor(A, B, Q) 
plt.colorbar() 
  
ax = fig.add_subplot(1, 2, 2) 
  
# defining the scale, with white 
# at zero 
vmin = -0.2
vmax = 0.8
norms = colors.DivergingNorm(vmin=vmin, 
                             vcenter=0, 
                             vmax=vmax) 
  
plt.pcolor(A, B, Q,  
           vmin=vmin, 
           vmax=vmax, 
           norm=norms)   
  
plt.colorbar()

输出:

python-matplotlib-divergingnorm

范例2:

import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.cbook as cbook 
import matplotlib.colors as colors 
  
file = cbook.get_sample_data('topobathy.npz', 
                             asfileobj = False) 
  
with np.load(file) as example:
    topo = example['topo'] 
    longi = example['longitude'] 
    latit = example['latitude'] 
  
figure, axes = plt.subplots(constrained_layout = True) 
  
# creating a colormap that 
# has land and ocean clearly 
# delineated and of the 
# same length (256 + 256) 
undersea = plt.cm.terrain(np.linspace(0, 0.17, 256)) 
land = plt.cm.terrain(np.linspace(0.25, 1, 256)) 
every_colors = np.vstack((undersea, land)) 
  
terrain_map = colors.LinearSegmentedColormap.from_list('terrain_map', 
                                                       every_colors) 
  
# the center is offset so that  
# the land has more dynamic range 
# while making the norm 
diversity_norm = colors.DivergingNorm(vmin =-500,  
                                      vcenter = 0, 
                                      vmax = 4000) 
  
pcm = axes.pcolormesh(longi, latit, topo,  
                      rasterized = True,  
                      norm = diversity_norm, 
                      cmap = terrain_map, ) 
  
axes.set_xlabel('Longitude $[^o E]$') 
axes.set_ylabel('Latitude $[^o N]$') 
axes.set_aspect(1 / np.cos(np.deg2rad(49))) 
  
figure.colorbar(pcm, shrink = 0.6,  
                extend ='both', 
                label ='Elevation [m]') 
plt.show()

输出:
matplotlib.colors.DivergingNorm




相关用法


注:本文由纯净天空筛选整理自RajuKumar19大神的英文原创作品 Matplotlib.colors.DivergingNorm class in Python。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。