Matplotlib是Python中令人惊叹的可视化库,用于数组的二维图。 Matplotlib是一个基于NumPy数组的多平台数据可视化库,旨在与更广泛的SciPy堆栈配合使用。
matplotlib.colors.DivergingNorm
matplotlib.colors.DivergingNorm类属于matplotlib.colors模块。 matplotlib.colors模块用于将颜色或数字参数转换为RGBA或RGB。此模块用于将数字映射到颜色或以一维颜色数组(也称为colormap)进行颜色规格转换。
matplotlib.colors.DivergingNorm类在围绕概念中心以不均匀或不相等的变化率映射数据时非常有用。例如,数据范围介于-2到2之间,以0为中心或mid-point。
用法: matplotlib.colors.DivergingNorm(vcenter, vmin, vmax)
参数:
- 虚拟中心:它接受一个浮点值,该值在规范化中定义0.5数据值。
- vmin:它是一个可选参数,它接受浮点值并在规范化中定义0.0数据值,默认为数据集的最小值。
- vmax:它是一个可选参数,它接受浮点值并在规范化中定义1.0数据值,默认为数据集的最大值。
范例1:
import numpy
from matplotlib import pyplot as plt
from matplotlib import colors
# dummy data to plot
x = numpy.linspace(0, 2*numpy.pi, 30)
y = numpy.linspace(0, 2*numpy.pi, 20)
[A, B] = numpy.meshgrid(x, y)
Q = numpy.sin(A)*numpy.cos(B)
fig = plt.figure()
plt.ion()
# yellow to green to red
# colormap
plt.set_cmap('brg')
ax = fig.add_subplot(1, 2, 1)
plt.pcolor(A, B, Q)
plt.colorbar()
ax = fig.add_subplot(1, 2, 2)
# defining the scale, with white
# at zero
vmin = -0.2
vmax = 0.8
norms = colors.DivergingNorm(vmin=vmin,
vcenter=0,
vmax=vmax)
plt.pcolor(A, B, Q,
vmin=vmin,
vmax=vmax,
norm=norms)
plt.colorbar()
输出:
范例2:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cbook as cbook
import matplotlib.colors as colors
file = cbook.get_sample_data('topobathy.npz',
asfileobj = False)
with np.load(file) as example:
topo = example['topo']
longi = example['longitude']
latit = example['latitude']
figure, axes = plt.subplots(constrained_layout = True)
# creating a colormap that
# has land and ocean clearly
# delineated and of the
# same length (256 + 256)
undersea = plt.cm.terrain(np.linspace(0, 0.17, 256))
land = plt.cm.terrain(np.linspace(0.25, 1, 256))
every_colors = np.vstack((undersea, land))
terrain_map = colors.LinearSegmentedColormap.from_list('terrain_map',
every_colors)
# the center is offset so that
# the land has more dynamic range
# while making the norm
diversity_norm = colors.DivergingNorm(vmin =-500,
vcenter = 0,
vmax = 4000)
pcm = axes.pcolormesh(longi, latit, topo,
rasterized = True,
norm = diversity_norm,
cmap = terrain_map, )
axes.set_xlabel('Longitude $[^o E]$')
axes.set_ylabel('Latitude $[^o N]$')
axes.set_aspect(1 / np.cos(np.deg2rad(49)))
figure.colorbar(pcm, shrink = 0.6,
extend ='both',
label ='Elevation [m]')
plt.show()
输出:
相关用法
- Python Matplotlib.ticker.MultipleLocator用法及代码示例
- Python Matplotlib.gridspec.GridSpec用法及代码示例
- Python Matplotlib.patches.CirclePolygon用法及代码示例
- Python Matplotlib.colors.Normalize用法及代码示例
注:本文由纯净天空筛选整理自RajuKumar19大神的英文原创作品 Matplotlib.colors.DivergingNorm class in Python。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。