当前位置: 首页>>代码示例>>Python>>正文


Python Model._test_loop方法代码示例

本文整理汇总了Python中torchbearer.Model._test_loop方法的典型用法代码示例。如果您正苦于以下问题:Python Model._test_loop方法的具体用法?Python Model._test_loop怎么用?Python Model._test_loop使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torchbearer.Model的用法示例。


在下文中一共展示了Model._test_loop方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_test_loop_stop_training

# 需要导入模块: from torchbearer import Model [as 别名]
# 或者: from torchbearer.Model import _test_loop [as 别名]
    def test_test_loop_stop_training(self):
        metric = Metric('test')
        metric_list = MetricList([metric])

        data = [(torch.Tensor([1]), torch.Tensor([1])), (torch.Tensor([2]), torch.Tensor([2])),
                (torch.Tensor([3]), torch.Tensor([3]))]
        validation_generator = DataLoader(data)
        validation_steps = len(data)

        callback = MagicMock()
        callback_List = torchbearer.CallbackList([callback])

        torchmodel = Mock(return_value=1)
        optimizer = MagicMock()

        criterion = Mock(return_value=2)

        torchbearermodel = Model(torchmodel, optimizer, criterion, [metric])

        state = torchbearermodel.main_state.copy()
        state.update({torchbearer.METRIC_LIST: metric_list, torchbearer.VALIDATION_GENERATOR: validation_generator,
                      torchbearer.CallbackList: callback_List, torchbearer.VALIDATION_STEPS: validation_steps,
                      torchbearer.CRITERION: criterion, torchbearer.STOP_TRAINING: True, torchbearer.METRICS: {}})

        torchbearerstate = torchbearermodel._test_loop(state, callback_List, False, Model._load_batch_standard, num_steps=None)

        self.assertTrue(torchbearerstate[torchbearer.MODEL].call_count == 1)
开发者ID:little1tow,项目名称:torchbearer,代码行数:29,代码来源:test_torchbearer.py

示例2: test_test_loop_metrics

# 需要导入模块: from torchbearer import Model [as 别名]
# 或者: from torchbearer.Model import _test_loop [as 别名]
    def test_test_loop_metrics(self):
        metric = Metric('test')
        metric.process = Mock(return_value={'test': 0})
        metric.process_final = Mock(return_value={'test': 0})
        metric.reset = Mock(return_value=None)
        metric_list = MetricList([metric])

        data = [(torch.Tensor([1]), torch.Tensor([1])), (torch.Tensor([2]), torch.Tensor([2])), (torch.Tensor([3]), torch.Tensor([3]))]
        validation_generator = DataLoader(data)
        validation_steps = len(data)

        callback = MagicMock()
        callback_List = torchbearer.CallbackList([callback])

        torchmodel = MagicMock()
        torchmodel.forward = Mock(return_value=1)
        optimizer = MagicMock()

        criterion = Mock(return_value=2)

        torchbearermodel = Model(torchmodel, optimizer, criterion, [metric])

        state = torchbearermodel.main_state.copy()
        state.update({torchbearer.METRIC_LIST: metric_list, torchbearer.VALIDATION_GENERATOR: validation_generator,
                 torchbearer.CallbackList: callback_List, torchbearer.MODEL: torchmodel, torchbearer.VALIDATION_STEPS: validation_steps,
                 torchbearer.CRITERION: criterion, torchbearer.STOP_TRAINING: False, torchbearer.METRICS: {}})

        torchbearerstate = torchbearermodel._test_loop(state, callback_List, False, Model._load_batch_standard, num_steps=None)

        torchbearerstate[torchbearer.METRIC_LIST].metric_list[0].reset.assert_called_once()
        self.assertTrue(torchbearerstate[torchbearer.METRIC_LIST].metric_list[0].process.call_count == len(data))
        torchbearerstate[torchbearer.METRIC_LIST].metric_list[0].process_final.assert_called_once()
        self.assertTrue(torchbearerstate[torchbearer.METRICS]['test'] == 0)
开发者ID:little1tow,项目名称:torchbearer,代码行数:35,代码来源:test_torchbearer.py

示例3: test_main_loop_validation_setup

# 需要导入模块: from torchbearer import Model [as 别名]
# 或者: from torchbearer.Model import _test_loop [as 别名]
    def test_main_loop_validation_setup(self):
        metric = Metric('test')

        data = [(torch.Tensor([1]), torch.Tensor([1])), (torch.Tensor([2]), torch.Tensor([2])), (torch.Tensor([3]), torch.Tensor([3]))]
        generator = DataLoader(data)
        valgenerator = DataLoader(data)
        train_steps = 2

        epochs = 1

        callback = MagicMock()

        torchmodel = MagicMock()
        torchmodel.forward = Mock(return_value=1)
        optimizer = MagicMock()

        loss = torch.tensor([2], requires_grad=True)
        criterion = Mock(return_value=loss)

        torchbearermodel = Model(torchmodel, optimizer, criterion, [metric])
        torchbearermodel._test_loop = Mock()
        torchbearerstate = torchbearermodel.fit_generator(generator, train_steps, epochs, 0, [callback],
                                                          validation_generator=valgenerator, initial_epoch=0,
                                                          pass_state=False)

        self.assertTrue(torchbearerstate[torchbearer.VALIDATION_STEPS] == len(valgenerator))
        self.assertTrue(torchbearerstate[torchbearer.VALIDATION_GENERATOR] == valgenerator)
开发者ID:little1tow,项目名称:torchbearer,代码行数:29,代码来源:test_torchbearer.py

示例4: test_predict_generator_pass_state

# 需要导入模块: from torchbearer import Model [as 别名]
# 或者: from torchbearer.Model import _test_loop [as 别名]
    def test_predict_generator_pass_state(self):
        torchmodel = MagicMock()
        optimizer = MagicMock()
        generator = MagicMock()

        pass_state = False
        steps = 100

        torchbearermodel = Model(torchmodel, optimizer, torch.nn.L1Loss(), [])
        torchbearermodel.main_state[torchbearer.FINAL_PREDICTIONS] = 1
        torchbearermodel._test_loop = Mock()

        torchbearermodel.predict_generator(generator, 0, steps, pass_state)
        self.assertTrue(torchbearermodel._test_loop.call_args[0][2] == pass_state)
开发者ID:little1tow,项目名称:torchbearer,代码行数:16,代码来源:test_torchbearer.py

示例5: test_evaluate_generator_steps

# 需要导入模块: from torchbearer import Model [as 别名]
# 或者: from torchbearer.Model import _test_loop [as 别名]
    def test_evaluate_generator_steps(self):
        torchmodel = MagicMock()
        optimizer = MagicMock()
        generator = MagicMock()

        pass_state = False
        steps = 100

        torchbearermodel = Model(torchmodel, optimizer, torch.nn.L1Loss(), [])
        torchbearermodel.main_state[torchbearer.METRICS] = 1
        torchbearermodel._test_loop = Mock()

        torchbearermodel.evaluate_generator(generator, 0, steps, pass_state)
        self.assertTrue(torchbearermodel._test_loop.call_args[0][4] == steps)
开发者ID:little1tow,项目名称:torchbearer,代码行数:16,代码来源:test_torchbearer.py

示例6: test_evaluate_generator_verbose

# 需要导入模块: from torchbearer import Model [as 别名]
# 或者: from torchbearer.Model import _test_loop [as 别名]
    def test_evaluate_generator_verbose(self):
        from torchbearer.callbacks import Tqdm

        torchmodel = MagicMock()
        optimizer = MagicMock()
        generator = MagicMock()

        pass_state = False
        steps = None

        torchbearermodel = Model(torchmodel, optimizer, torch.nn.L1Loss(), [])
        torchbearermodel.main_state[torchbearer.METRICS] = 1
        torchbearermodel._test_loop = Mock()

        torchbearermodel.evaluate_generator(generator, 1, steps, pass_state)
        self.assertIsInstance(torchbearermodel._test_loop.call_args[0][1].callback_list[0], Tqdm)
开发者ID:little1tow,项目名称:torchbearer,代码行数:18,代码来源:test_torchbearer.py

示例7: test_predict_generator_verbose

# 需要导入模块: from torchbearer import Model [as 别名]
# 或者: from torchbearer.Model import _test_loop [as 别名]
    def test_predict_generator_verbose(self):
        from torchbearer.callbacks import Tqdm

        torchmodel = MagicMock()
        optimizer = MagicMock()
        generator = MagicMock()

        pass_state = False
        steps = None

        torchbearermodel = Model(torchmodel, optimizer, torch.nn.L1Loss(), [])
        torchbearermodel.main_state[torchbearer.FINAL_PREDICTIONS] = 1
        torchbearermodel._test_loop = Mock()

        torchbearermodel.predict_generator(generator, 1, steps, pass_state)
        self.assertIsInstance(torchbearermodel._test_loop.call_args[0][1].callback_list[1], Tqdm)
        self.assertTrue(torchbearermodel._test_loop.call_args[0][2] == pass_state)
        self.assertTrue(torchbearermodel._test_loop.call_args[0][4] == steps)
开发者ID:little1tow,项目名称:torchbearer,代码行数:20,代码来源:test_torchbearer.py


注:本文中的torchbearer.Model._test_loop方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。