当前位置: 首页>>代码示例>>Python>>正文


Python Matrix.diagonalize方法代码示例

本文整理汇总了Python中sympy.Matrix.diagonalize方法的典型用法代码示例。如果您正苦于以下问题:Python Matrix.diagonalize方法的具体用法?Python Matrix.diagonalize怎么用?Python Matrix.diagonalize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sympy.Matrix的用法示例。


在下文中一共展示了Matrix.diagonalize方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_jordan_form

# 需要导入模块: from sympy import Matrix [as 别名]
# 或者: from sympy.Matrix import diagonalize [as 别名]
def test_jordan_form():

    m = Matrix(3,2,[-3, 1, -3, 20, 3, 10])
    raises(NonSquareMatrixError, 'm.jordan_form()')

    # diagonalizable
    m = Matrix(3, 3, [7, -12, 6, 10, -19, 10, 12, -24, 13])
    Jmust = Matrix(3, 3, [1, 0, 0, 0, 1, 0, 0, 0, -1])
    (P, J) = m.jordan_form()
    assert Jmust == J
    assert Jmust == m.diagonalize()[1]

    #m = Matrix(3, 3, [0, 6, 3, 1, 3, 1, -2, 2, 1])
    #m.jordan_form() # very long
    # m.jordan_form() #

    # diagonalizable, complex only

    # Jordan cells
    # complexity: one of eigenvalues is zero
    m = Matrix(3, 3, [0, 1, 0, -4, 4, 0, -2, 1, 2])
    Jmust = Matrix(3, 3, [2, 0, 0, 0, 2, 1, 0, 0, 2])
    assert Jmust == m.jordan_form()[1]
    (P, Jcells) = m.jordan_cells()
    assert Jcells[0] == Matrix(1, 1, [2])
    assert Jcells[1] == Matrix(2, 2, [2, 1, 0, 2])

    #complexity: all of eigenvalues are equal
    m = Matrix(3, 3, [2, 6, -15, 1, 1, -5, 1, 2, -6])
    Jmust = Matrix(3, 3, [-1, 0, 0, 0, -1, 1, 0, 0, -1])
    (P, J) = m.jordan_form()
    assert Jmust == J

    #complexity: two of eigenvalues are zero
    m = Matrix(3, 3, [4, -5, 2, 5, -7, 3, 6, -9, 4])
    Jmust = Matrix(3, 3, [1, 0, 0, 0, 0, 1, 0, 0, 0])
    (P, J) = m.jordan_form()
    assert Jmust == J

    m = Matrix(4, 4, [6, 5, -2, -3, -3, -1, 3, 3, 2, 1, -2, -3, -1, 1, 5, 5])
    Jmust = Matrix(4, 4, [2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2])
    (P, J) = m.jordan_form()
    assert Jmust == J

    m = Matrix(4, 4, [6, 2, -8, -6, -3, 2, 9, 6, 2, -2, -8, -6, -1, 0, 3, 4])
    Jmust = Matrix(4, 4, [2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, -2])
    (P, J) = m.jordan_form()
    assert Jmust == J

    m = Matrix(4, 4, [5, 4, 2, 1, 0, 1, -1, -1, -1, -1, 3, 0, 1, 1, -1, 2])
    assert not m.is_diagonalizable()
    Jmust = Matrix(4, 4, [1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4, 1, 0, 0, 0, 4])
    (P, J) = m.jordan_form()
    assert Jmust == J
开发者ID:robotment,项目名称:sympy,代码行数:56,代码来源:test_matrices.py

示例2: test_diagonalization

# 需要导入模块: from sympy import Matrix [as 别名]
# 或者: from sympy.Matrix import diagonalize [as 别名]
def test_diagonalization():
    x, y, z = symbols('x y z')
    m = Matrix(3,2,[-3, 1, -3, 20, 3, 10])
    assert not m.is_diagonalizable()
    assert not m.is_symmetric()
    raises(NonSquareMatrixError, 'm.diagonalize()')

    # diagonalizable
    m = diag(1, 2, 3)
    (P, D) = m.diagonalize()
    assert P == eye(3)
    assert D == m

    m = Matrix(2,2,[0, 1, 1, 0])
    assert m.is_symmetric()
    assert m.is_diagonalizable()
    (P, D) = m.diagonalize()
    assert P.inv() * m * P == D

    m = Matrix(2,2,[1, 0, 0, 3])
    assert m.is_symmetric()
    assert m.is_diagonalizable()
    (P, D) = m.diagonalize()
    assert P.inv() * m * P == D
    assert P == eye(2)
    assert D == m

    m = Matrix(2,2,[1, 1, 0, 0])
    assert m.is_diagonalizable()
    (P, D) = m.diagonalize()
    assert P.inv() * m * P == D

    m = Matrix(3,3,[1, 2, 0, 0, 3, 0, 2, -4, 2])
    assert m.is_diagonalizable()
    (P, D) = m.diagonalize()
    assert P.inv() * m * P == D

    m = Matrix(2,2,[1, 0, 0, 0])
    assert m.is_diagonal()
    assert m.is_diagonalizable()
    (P, D) = m.diagonalize()
    assert P.inv() * m * P == D
    assert P == eye(2)

    # diagonalizable, complex only
    m = Matrix(2,2,[0, 1, -1, 0])
    assert not m.is_diagonalizable(True)
    raises(MatrixError, '(D, P) = m.diagonalize(True)')
    assert m.is_diagonalizable()
    (P, D) = m.diagonalize()
    assert P.inv() * m * P == D

    m = Matrix(2,2,[1, 0, 0, I])
    raises(NotImplementedError, 'm.is_diagonalizable(True)')
    # !!! bug because of eigenvects() or roots(x**2 + (-1 - I)*x + I, x)
    # see issue 2193
    # assert not m.is_diagonalizable(True)
    # raises(MatrixError, '(P, D) = m.diagonalize(True)')
    # (P, D) = m.diagonalize(True)

    # not diagonalizable
    m = Matrix(2,2,[0, 1, 0, 0])
    assert not m.is_diagonalizable()
    raises(MatrixError, '(D, P) = m.diagonalize()')

    m = Matrix(3,3,[-3, 1, -3, 20, 3, 10, 2, -2, 4])
    assert not m.is_diagonalizable()
    raises(MatrixError, '(D, P) = m.diagonalize()')

    # symbolic
    a, b, c, d = symbols('a b c d')
    m = Matrix(2,2,[a, c, c, b])
    assert m.is_symmetric()
    assert m.is_diagonalizable()
开发者ID:robotment,项目名称:sympy,代码行数:76,代码来源:test_matrices.py


注:本文中的sympy.Matrix.diagonalize方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。