本文整理汇总了Python中statsmodels.tsa.statespace.kalman_filter.KalmanFilter.transition[([1,1],[1,2],[0,0])]方法的典型用法代码示例。如果您正苦于以下问题:Python KalmanFilter.transition[([1,1],[1,2],[0,0])]方法的具体用法?Python KalmanFilter.transition[([1,1],[1,2],[0,0])]怎么用?Python KalmanFilter.transition[([1,1],[1,2],[0,0])]使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类statsmodels.tsa.statespace.kalman_filter.KalmanFilter
的用法示例。
在下文中一共展示了KalmanFilter.transition[([1,1],[1,2],[0,0])]方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_kalman_filter_pickle
# 需要导入模块: from statsmodels.tsa.statespace.kalman_filter import KalmanFilter [as 别名]
# 或者: from statsmodels.tsa.statespace.kalman_filter.KalmanFilter import transition[([1,1],[1,2],[0,0])] [as 别名]
def test_kalman_filter_pickle(data):
# Construct the statespace representation
true = results_kalman_filter.uc_uni
k_states = 4
model = KalmanFilter(k_endog=1, k_states=k_states)
model.bind(data['lgdp'].values)
model.design[:, :, 0] = [1, 1, 0, 0]
model.transition[([0, 0, 1, 1, 2, 3],
[0, 3, 1, 2, 1, 3],
[0, 0, 0, 0, 0, 0])] = [1, 1, 0, 0, 1, 1]
model.selection = np.eye(model.k_states)
# Update matrices with given parameters
(sigma_v, sigma_e, sigma_w, phi_1, phi_2) = np.array(
true['parameters']
)
model.transition[([1, 1], [1, 2], [0, 0])] = [phi_1, phi_2]
model.state_cov[
np.diag_indices(k_states) + (np.zeros(k_states, dtype=int),)] = [
sigma_v ** 2, sigma_e ** 2, 0, sigma_w ** 2
]
# Initialization
initial_state = np.zeros((k_states,))
initial_state_cov = np.eye(k_states) * 100
# Initialization: modification
initial_state_cov = np.dot(
np.dot(model.transition[:, :, 0], initial_state_cov),
model.transition[:, :, 0].T
)
model.initialize_known(initial_state, initial_state_cov)
pkl_mod = cPickle.loads(cPickle.dumps(model))
results = model.filter()
pkl_results = pkl_mod.filter()
assert_allclose(results.llf_obs[true['start']:].sum(),
pkl_results.llf_obs[true['start']:].sum())
assert_allclose(results.filtered_state[0][true['start']:],
pkl_results.filtered_state[0][true['start']:])
assert_allclose(results.filtered_state[1][true['start']:],
pkl_results.filtered_state[1][true['start']:])
assert_allclose(results.filtered_state[3][true['start']:],
pkl_results.filtered_state[3][true['start']:])