当前位置: 首页>>代码示例>>Python>>正文


Python KalmanFilter.design方法代码示例

本文整理汇总了Python中statsmodels.tsa.statespace.kalman_filter.KalmanFilter.design方法的典型用法代码示例。如果您正苦于以下问题:Python KalmanFilter.design方法的具体用法?Python KalmanFilter.design怎么用?Python KalmanFilter.design使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在statsmodels.tsa.statespace.kalman_filter.KalmanFilter的用法示例。


在下文中一共展示了KalmanFilter.design方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_cython

# 需要导入模块: from statsmodels.tsa.statespace.kalman_filter import KalmanFilter [as 别名]
# 或者: from statsmodels.tsa.statespace.kalman_filter.KalmanFilter import design [as 别名]
def test_cython():
    # Test the cython _kalman_filter creation, re-creation, calling, etc.

    # Check that datatypes are correct:
    for prefix, dtype in tools.prefix_dtype_map.items():
        endog = np.array(1.0, ndmin=2, dtype=dtype)
        mod = KalmanFilter(k_endog=1, k_states=1, dtype=dtype)

        # Bind data and initialize the ?KalmanFilter object
        mod.bind(endog)
        mod._initialize_filter()

        # Check that the dtype and prefix are correct
        assert_equal(mod.prefix, prefix)
        assert_equal(mod.dtype, dtype)

        # Test that a dKalmanFilter instance was created
        assert_equal(prefix in mod._kalman_filters, True)
        kf = mod._kalman_filters[prefix]
        assert_equal(isinstance(kf, tools.prefix_kalman_filter_map[prefix]), True)

        # Test that the default returned _kalman_filter is the above instance
        assert_equal(mod._kalman_filter, kf)

    # Check that upcasting datatypes / ?KalmanFilter works (e.g. d -> z)
    mod = KalmanFilter(k_endog=1, k_states=1)

    # Default dtype is float
    assert_equal(mod.prefix, "d")
    assert_equal(mod.dtype, np.float64)

    # Prior to initialization, no ?KalmanFilter exists
    assert_equal(mod._kalman_filter, None)

    # Bind data and initialize the ?KalmanFilter object
    endog = np.ascontiguousarray(np.array([1.0, 2.0], dtype=np.float64))
    mod.bind(endog)
    mod._initialize_filter()
    kf = mod._kalman_filters["d"]

    # Rebind data, still float, check that we haven't changed
    mod.bind(endog)
    mod._initialize_filter()
    assert_equal(mod._kalman_filter, kf)

    # Force creating new ?Statespace and ?KalmanFilter, by changing the
    # time-varying character of an array
    mod.design = np.zeros((1, 1, 2))
    mod._initialize_filter()
    assert_equal(mod._kalman_filter == kf, False)
    kf = mod._kalman_filters["d"]

    # Rebind data, now complex, check that the ?KalmanFilter instance has
    # changed
    endog = np.ascontiguousarray(np.array([1.0, 2.0], dtype=np.complex128))
    mod.bind(endog)
    assert_equal(mod._kalman_filter == kf, False)
开发者ID:RaoUmer,项目名称:statsmodels,代码行数:59,代码来源:test_representation.py


注:本文中的statsmodels.tsa.statespace.kalman_filter.KalmanFilter.design方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。