本文整理汇总了Python中statsmodels.tsa.statespace.kalman_filter.KalmanFilter.bind方法的典型用法代码示例。如果您正苦于以下问题:Python KalmanFilter.bind方法的具体用法?Python KalmanFilter.bind怎么用?Python KalmanFilter.bind使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类statsmodels.tsa.statespace.kalman_filter.KalmanFilter
的用法示例。
在下文中一共展示了KalmanFilter.bind方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_slice_notation
# 需要导入模块: from statsmodels.tsa.statespace.kalman_filter import KalmanFilter [as 别名]
# 或者: from statsmodels.tsa.statespace.kalman_filter.KalmanFilter import bind [as 别名]
def test_slice_notation():
endog = np.arange(10)*1.0
mod = KalmanFilter(k_endog=1, k_states=2)
mod.bind(endog)
# Test invalid __setitem__
def set_designs():
mod['designs'] = 1
def set_designs2():
mod['designs',0,0] = 1
def set_designs3():
mod[0] = 1
assert_raises(IndexError, set_designs)
assert_raises(IndexError, set_designs2)
assert_raises(IndexError, set_designs3)
# Test invalid __getitem__
assert_raises(IndexError, lambda: mod['designs'])
assert_raises(IndexError, lambda: mod['designs',0,0,0])
assert_raises(IndexError, lambda: mod[0])
# Test valid __setitem__, __getitem__
assert_equal(mod.design[0,0,0], 0)
mod['design',0,0,0] = 1
assert_equal(mod['design'].sum(), 1)
assert_equal(mod.design[0,0,0], 1)
assert_equal(mod['design',0,0,0], 1)
# Test valid __setitem__, __getitem__ with unspecified time index
mod['design'] = np.zeros(mod['design'].shape)
assert_equal(mod.design[0,0], 0)
mod['design',0,0] = 1
assert_equal(mod.design[0,0], 1)
assert_equal(mod['design',0,0], 1)
示例2: Options
# 需要导入模块: from statsmodels.tsa.statespace.kalman_filter import KalmanFilter [as 别名]
# 或者: from statsmodels.tsa.statespace.kalman_filter.KalmanFilter import bind [as 别名]
class Options(object):
def __init__(self, *args, **kwargs):
# Dummy data
endog = np.arange(10)
k_states = 1
self.model = KalmanFilter(k_endog=1, k_states=k_states, *args, **kwargs)
self.model.bind(endog)
示例3: test_cython
# 需要导入模块: from statsmodels.tsa.statespace.kalman_filter import KalmanFilter [as 别名]
# 或者: from statsmodels.tsa.statespace.kalman_filter.KalmanFilter import bind [as 别名]
def test_cython():
# Test the cython _kalman_filter creation, re-creation, calling, etc.
# Check that datatypes are correct:
for prefix, dtype in tools.prefix_dtype_map.items():
endog = np.array(1.0, ndmin=2, dtype=dtype)
mod = KalmanFilter(k_endog=1, k_states=1, dtype=dtype)
# Bind data and initialize the ?KalmanFilter object
mod.bind(endog)
mod._initialize_filter()
# Check that the dtype and prefix are correct
assert_equal(mod.prefix, prefix)
assert_equal(mod.dtype, dtype)
# Test that a dKalmanFilter instance was created
assert_equal(prefix in mod._kalman_filters, True)
kf = mod._kalman_filters[prefix]
assert_equal(isinstance(kf, tools.prefix_kalman_filter_map[prefix]), True)
# Test that the default returned _kalman_filter is the above instance
assert_equal(mod._kalman_filter, kf)
# Check that upcasting datatypes / ?KalmanFilter works (e.g. d -> z)
mod = KalmanFilter(k_endog=1, k_states=1)
# Default dtype is float
assert_equal(mod.prefix, "d")
assert_equal(mod.dtype, np.float64)
# Prior to initialization, no ?KalmanFilter exists
assert_equal(mod._kalman_filter, None)
# Bind data and initialize the ?KalmanFilter object
endog = np.ascontiguousarray(np.array([1.0, 2.0], dtype=np.float64))
mod.bind(endog)
mod._initialize_filter()
kf = mod._kalman_filters["d"]
# Rebind data, still float, check that we haven't changed
mod.bind(endog)
mod._initialize_filter()
assert_equal(mod._kalman_filter, kf)
# Force creating new ?Statespace and ?KalmanFilter, by changing the
# time-varying character of an array
mod.design = np.zeros((1, 1, 2))
mod._initialize_filter()
assert_equal(mod._kalman_filter == kf, False)
kf = mod._kalman_filters["d"]
# Rebind data, now complex, check that the ?KalmanFilter instance has
# changed
endog = np.ascontiguousarray(np.array([1.0, 2.0], dtype=np.complex128))
mod.bind(endog)
assert_equal(mod._kalman_filter == kf, False)
示例4: test_kalman_filter_pickle
# 需要导入模块: from statsmodels.tsa.statespace.kalman_filter import KalmanFilter [as 别名]
# 或者: from statsmodels.tsa.statespace.kalman_filter.KalmanFilter import bind [as 别名]
def test_kalman_filter_pickle(data):
# Construct the statespace representation
true = results_kalman_filter.uc_uni
k_states = 4
model = KalmanFilter(k_endog=1, k_states=k_states)
model.bind(data['lgdp'].values)
model.design[:, :, 0] = [1, 1, 0, 0]
model.transition[([0, 0, 1, 1, 2, 3],
[0, 3, 1, 2, 1, 3],
[0, 0, 0, 0, 0, 0])] = [1, 1, 0, 0, 1, 1]
model.selection = np.eye(model.k_states)
# Update matrices with given parameters
(sigma_v, sigma_e, sigma_w, phi_1, phi_2) = np.array(
true['parameters']
)
model.transition[([1, 1], [1, 2], [0, 0])] = [phi_1, phi_2]
model.state_cov[
np.diag_indices(k_states) + (np.zeros(k_states, dtype=int),)] = [
sigma_v ** 2, sigma_e ** 2, 0, sigma_w ** 2
]
# Initialization
initial_state = np.zeros((k_states,))
initial_state_cov = np.eye(k_states) * 100
# Initialization: modification
initial_state_cov = np.dot(
np.dot(model.transition[:, :, 0], initial_state_cov),
model.transition[:, :, 0].T
)
model.initialize_known(initial_state, initial_state_cov)
pkl_mod = cPickle.loads(cPickle.dumps(model))
results = model.filter()
pkl_results = pkl_mod.filter()
assert_allclose(results.llf_obs[true['start']:].sum(),
pkl_results.llf_obs[true['start']:].sum())
assert_allclose(results.filtered_state[0][true['start']:],
pkl_results.filtered_state[0][true['start']:])
assert_allclose(results.filtered_state[1][true['start']:],
pkl_results.filtered_state[1][true['start']:])
assert_allclose(results.filtered_state[3][true['start']:],
pkl_results.filtered_state[3][true['start']:])
示例5: test_slice_notation
# 需要导入模块: from statsmodels.tsa.statespace.kalman_filter import KalmanFilter [as 别名]
# 或者: from statsmodels.tsa.statespace.kalman_filter.KalmanFilter import bind [as 别名]
def test_slice_notation():
# Test setting and getting state space representation matrices using the
# slice notation.
endog = np.arange(10) * 1.0
mod = KalmanFilter(k_endog=1, k_states=2)
mod.bind(endog)
# Test invalid __setitem__
def set_designs():
mod["designs"] = 1
def set_designs2():
mod["designs", 0, 0] = 1
def set_designs3():
mod[0] = 1
assert_raises(IndexError, set_designs)
assert_raises(IndexError, set_designs2)
assert_raises(IndexError, set_designs3)
# Test invalid __getitem__
assert_raises(IndexError, lambda: mod["designs"])
assert_raises(IndexError, lambda: mod["designs", 0, 0, 0])
assert_raises(IndexError, lambda: mod[0])
# Test valid __setitem__, __getitem__
assert_equal(mod.design[0, 0, 0], 0)
mod["design", 0, 0, 0] = 1
assert_equal(mod["design"].sum(), 1)
assert_equal(mod.design[0, 0, 0], 1)
assert_equal(mod["design", 0, 0, 0], 1)
# Test valid __setitem__, __getitem__ with unspecified time index
mod["design"] = np.zeros(mod["design"].shape)
assert_equal(mod.design[0, 0], 0)
mod["design", 0, 0] = 1
assert_equal(mod.design[0, 0], 1)
assert_equal(mod["design", 0, 0], 1)
示例6: Clark1987
# 需要导入模块: from statsmodels.tsa.statespace.kalman_filter import KalmanFilter [as 别名]
# 或者: from statsmodels.tsa.statespace.kalman_filter.KalmanFilter import bind [as 别名]
class Clark1987(object):
"""
Clark's (1987) univariate unobserved components model of real GDP (as
presented in Kim and Nelson, 1999)
Test data produced using GAUSS code described in Kim and Nelson (1999) and
found at http://econ.korea.ac.kr/~cjkim/SSMARKOV.htm
See `results.results_kalman_filter` for more information.
"""
def __init__(self, dtype=float, **kwargs):
self.true = results_kalman_filter.uc_uni
self.true_states = pd.DataFrame(self.true['states'])
# GDP, Quarterly, 1947.1 - 1995.3
data = pd.DataFrame(
self.true['data'],
index=pd.date_range('1947-01-01', '1995-07-01', freq='QS'),
columns=['GDP']
)
data['lgdp'] = np.log(data['GDP'])
# Construct the statespace representation
k_states = 4
self.model = KalmanFilter(k_endog=1, k_states=k_states, **kwargs)
self.model.bind(data['lgdp'].values)
self.model.design[:, :, 0] = [1, 1, 0, 0]
self.model.transition[([0, 0, 1, 1, 2, 3],
[0, 3, 1, 2, 1, 3],
[0, 0, 0, 0, 0, 0])] = [1, 1, 0, 0, 1, 1]
self.model.selection = np.eye(self.model.k_states)
# Update matrices with given parameters
(sigma_v, sigma_e, sigma_w, phi_1, phi_2) = np.array(
self.true['parameters']
)
self.model.transition[([1, 1], [1, 2], [0, 0])] = [phi_1, phi_2]
self.model.state_cov[
np.diag_indices(k_states)+(np.zeros(k_states, dtype=int),)] = [
sigma_v**2, sigma_e**2, 0, sigma_w**2
]
# Initialization
initial_state = np.zeros((k_states,))
initial_state_cov = np.eye(k_states)*100
# Initialization: modification
initial_state_cov = np.dot(
np.dot(self.model.transition[:, :, 0], initial_state_cov),
self.model.transition[:, :, 0].T
)
self.model.initialize_known(initial_state, initial_state_cov)
def run_filter(self):
# Filter the data
self.results = self.model.filter()
def test_loglike(self):
assert_almost_equal(
self.results.llf_obs[self.true['start']:].sum(),
self.true['loglike'], 5
)
def test_filtered_state(self):
assert_almost_equal(
self.results.filtered_state[0][self.true['start']:],
self.true_states.iloc[:, 0], 4
)
assert_almost_equal(
self.results.filtered_state[1][self.true['start']:],
self.true_states.iloc[:, 1], 4
)
assert_almost_equal(
self.results.filtered_state[3][self.true['start']:],
self.true_states.iloc[:, 2], 4
)
示例7: Clark1989
# 需要导入模块: from statsmodels.tsa.statespace.kalman_filter import KalmanFilter [as 别名]
# 或者: from statsmodels.tsa.statespace.kalman_filter.KalmanFilter import bind [as 别名]
class Clark1989(object):
"""
Clark's (1989) bivariate unobserved components model of real GDP (as
presented in Kim and Nelson, 1999)
Tests two-dimensional observation data.
Test data produced using GAUSS code described in Kim and Nelson (1999) and
found at http://econ.korea.ac.kr/~cjkim/SSMARKOV.htm
See `results.results_kalman_filter` for more information.
"""
def __init__(self, dtype=float, **kwargs):
self.true = results_kalman_filter.uc_bi
self.true_states = pd.DataFrame(self.true['states'])
# GDP and Unemployment, Quarterly, 1948.1 - 1995.3
data = pd.DataFrame(
self.true['data'],
index=pd.date_range('1947-01-01', '1995-07-01', freq='QS'),
columns=['GDP', 'UNEMP']
)[4:]
data['GDP'] = np.log(data['GDP'])
data['UNEMP'] = (data['UNEMP']/100)
k_states = 6
self.model = KalmanFilter(k_endog=2, k_states=k_states, **kwargs)
self.model.bind(np.ascontiguousarray(data.values))
# Statespace representation
self.model.design[:, :, 0] = [[1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1]]
self.model.transition[
([0, 0, 1, 1, 2, 3, 4, 5],
[0, 4, 1, 2, 1, 2, 4, 5],
[0, 0, 0, 0, 0, 0, 0, 0])
] = [1, 1, 0, 0, 1, 1, 1, 1]
self.model.selection = np.eye(self.model.k_states)
# Update matrices with given parameters
(sigma_v, sigma_e, sigma_w, sigma_vl, sigma_ec,
phi_1, phi_2, alpha_1, alpha_2, alpha_3) = np.array(
self.true['parameters'],
)
self.model.design[([1, 1, 1], [1, 2, 3], [0, 0, 0])] = [
alpha_1, alpha_2, alpha_3
]
self.model.transition[([1, 1], [1, 2], [0, 0])] = [phi_1, phi_2]
self.model.obs_cov[1, 1, 0] = sigma_ec**2
self.model.state_cov[
np.diag_indices(k_states)+(np.zeros(k_states, dtype=int),)] = [
sigma_v**2, sigma_e**2, 0, 0, sigma_w**2, sigma_vl**2
]
# Initialization
initial_state = np.zeros((k_states,))
initial_state_cov = np.eye(k_states)*100
# Initialization: self.modelification
initial_state_cov = np.dot(
np.dot(self.model.transition[:, :, 0], initial_state_cov),
self.model.transition[:, :, 0].T
)
self.model.initialize_known(initial_state, initial_state_cov)
def run_filter(self):
# Filter the data
self.results = self.model.filter()
def test_loglike(self):
assert_almost_equal(
# self.results.llf_obs[self.true['start']:].sum(),
self.results.llf_obs[0:].sum(),
self.true['loglike'], 2
)
def test_filtered_state(self):
assert_almost_equal(
self.results.filtered_state[0][self.true['start']:],
self.true_states.iloc[:, 0], 4
)
assert_almost_equal(
self.results.filtered_state[1][self.true['start']:],
self.true_states.iloc[:, 1], 4
)
assert_almost_equal(
self.results.filtered_state[4][self.true['start']:],
self.true_states.iloc[:, 2], 4
)
assert_almost_equal(
self.results.filtered_state[5][self.true['start']:],
self.true_states.iloc[:, 3], 4
)