当前位置: 首页>>代码示例>>Python>>正文


Python ZZ.one方法代码示例

本文整理汇总了Python中sage.rings.all.ZZ.one方法的典型用法代码示例。如果您正苦于以下问题:Python ZZ.one方法的具体用法?Python ZZ.one怎么用?Python ZZ.one使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sage.rings.all.ZZ的用法示例。


在下文中一共展示了ZZ.one方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: mult_order

# 需要导入模块: from sage.rings.all import ZZ [as 别名]
# 或者: from sage.rings.all.ZZ import one [as 别名]
 def mult_order(x):
     ct = ZZ.one()
     cur = x
     while cur != one:
         cur *= x
         ct += ZZ.one()
     return ZZ(ct)
开发者ID:Babyll,项目名称:sage,代码行数:9,代码来源:complex_reflection_or_generalized_coxeter_groups.py

示例2: __iter__

# 需要导入模块: from sage.rings.all import ZZ [as 别名]
# 或者: from sage.rings.all.ZZ import one [as 别名]
    def __iter__(self):
        """
        Iterate over ``self``.

        EXAMPLES::

            sage: S = SignedPermutations(2)
            sage: [x for x in S]
            [[1, 2], [1, -2], [-1, 2], [-1, -2],
             [2, 1], [2, -1], [-2, 1], [-2, -1]]
        """
        pmone = [ZZ.one(), -ZZ.one()]
        for p in self._P:
            for c in itertools.product(pmone, repeat=self._n):
                yield self.element_class(self, c, p)
开发者ID:saraedum,项目名称:sage-renamed,代码行数:17,代码来源:colored_permutations.py

示例3: phi

# 需要导入模块: from sage.rings.all import ZZ [as 别名]
# 或者: from sage.rings.all.ZZ import one [as 别名]
        def phi(self, i):
            r"""
            Return `\varphi_i` of ``self``.

            EXAMPLES::

                sage: S = crystals.OddNegativeRoots(['A', [2,2]])
                sage: mg = S.module_generator()
                sage: [mg.phi(i) for i in S.index_set()]
                [0, 0, 1, 0, 0]
                sage: b = mg.f(0)
                sage: [b.phi(i) for i in S.index_set()]
                [0, 1, 0, 1, 0]
                sage: b = mg.f_string([0,1,0,-1,0,-1]); b
                {-e[-2]+e[1], -e[-2]+e[2], -e[-1]+e[1]}
                sage: [b.phi(i) for i in S.index_set()]
                [2, 0, 0, 1, 1]

            TESTS::

                sage: S = crystals.OddNegativeRoots(['A', [2,1]])
                sage: def count_f(x, i):
                ....:     ret = -1
                ....:     while x is not None:
                ....:         x = x.f(i)
                ....:         ret += 1
                ....:     return ret
                sage: for x in S:
                ....:     for i in S.index_set():
                ....:         assert x.phi(i) == count_f(x, i)
            """
            if i == 0:
                return ZZ.zero() if (-1,1) in self.value else ZZ.one()

            count = 0
            ret = 0
            if i < 0:
                lst = sorted(self.value, key=lambda x: (x[1], -x[0]))
                for val in reversed(lst):
                    # We don't have to check val[1] because this is an odd root
                    if val[0] == i:
                        if count == 0:
                            ret += 1
                        else:
                            count -= 1
                    elif val[0] == i - 1:
                        count += 1

            else: # i > 0
                lst = sorted(self.value, key=lambda x: (-x[0], -x[1]))
                for val in lst:
                    # We don't have to check val[0] because this is an odd root
                    if val[1] == i:
                        if count == 0:
                            ret += 1
                        else:
                            count -= 1
                    elif val[1] == i + 1:
                        count += 1
            return ret
开发者ID:saraedum,项目名称:sage-renamed,代码行数:62,代码来源:kac_modules.py

示例4: long_element

# 需要导入模块: from sage.rings.all import ZZ [as 别名]
# 或者: from sage.rings.all.ZZ import one [as 别名]
    def long_element(self, index_set=None):
        """
        Return the longest element of ``self``, or of the
        parabolic subgroup corresponding to the given ``index_set``.

        INPUT:

        - ``index_set`` -- (optional) a subset (as a list or iterable)
          of the nodes of the indexing set

        EXAMPLES::

            sage: S = SignedPermutations(4)
            sage: S.long_element()
            [-1, -2, -3, -4]

        TESTS:

        Check that this is the element of maximal length (:trac:`25200`)::

            sage: S = SignedPermutations(4)
            sage: S.long_element().length() == max(x.length() for x in S)
            True
            sage: all(SignedPermutations(n).long_element().length() == n^2
            ....:     for n in range(2,10))
            True
        """
        if index_set is not None:
            return super(SignedPermutations, self).long_element()
        return self.element_class(self, [-ZZ.one()] * self._n, self._P.one())
开发者ID:saraedum,项目名称:sage-renamed,代码行数:32,代码来源:colored_permutations.py

示例5: iterator_fast

# 需要导入模块: from sage.rings.all import ZZ [as 别名]
# 或者: from sage.rings.all.ZZ import one [as 别名]
def iterator_fast(n, l):
    """
    Iterate over all ``l`` weighted integer vectors with total weight ``n``.

    INPUT:

    - ``n`` -- an integer
    - ``l`` -- the weights in weakly decreasing order

    EXAMPLES::

        sage: from sage.combinat.integer_vector_weighted import iterator_fast
        sage: list(iterator_fast(3, [2,1,1]))
        [[1, 1, 0], [1, 0, 1], [0, 3, 0], [0, 2, 1], [0, 1, 2], [0, 0, 3]]
        sage: list(iterator_fast(2, [2]))
        [[1]]

    Test that :trac:`20491` is fixed::

        sage: type(list(iterator_fast(2, [2]))[0][0])
        <type 'sage.rings.integer.Integer'>
    """
    if n < 0:
        return

    zero = ZZ.zero()
    one = ZZ.one()

    if not l:
        if n == 0:
            yield []
        return
    if len(l) == 1:
        if n % l[0] == 0:
            yield [n // l[0]]
        return

    k = 0
    cur = [n // l[k] + one]
    rem = n - cur[-1] * l[k] # Amount remaining
    while cur:
        cur[-1] -= one
        rem += l[k]
        if rem == zero:
            yield cur + [zero] * (len(l) - len(cur))
        elif cur[-1] < zero or rem < zero:
            rem += cur.pop() * l[k]
            k -= 1
        elif len(l) == len(cur) + 1:
            if rem % l[-1] == zero:
                yield cur + [rem // l[-1]]
        else:
            k += 1
            cur.append(rem // l[k] + one)
            rem -= cur[-1] * l[k]
开发者ID:mcognetta,项目名称:sage,代码行数:57,代码来源:integer_vector_weighted.py

示例6: one

# 需要导入模块: from sage.rings.all import ZZ [as 别名]
# 或者: from sage.rings.all.ZZ import one [as 别名]
    def one(self):
        """
        Return the identity element of ``self``.

        EXAMPLES::

            sage: S = SignedPermutations(4)
            sage: S.one()
            [1, 2, 3, 4]
        """
        return self.element_class(self, [ZZ.one()] * self._n, self._P.identity())
开发者ID:novoselt,项目名称:sage,代码行数:13,代码来源:colored_permutations.py

示例7: simple_reflection

# 需要导入模块: from sage.rings.all import ZZ [as 别名]
# 或者: from sage.rings.all.ZZ import one [as 别名]
    def simple_reflection(self, i):
        r"""
        Return the ``i``-th simple reflection of ``self``.

        EXAMPLES::

            sage: S = SignedPermutations(4)
            sage: S.simple_reflection(1)
            [2, 1, 3, 4]
            sage: S.simple_reflection(4)
            [1, 2, 3, -4]
        """
        if i not in self.index_set():
            raise ValueError("i must be in the index set")
        if i < self._n:
            p = list(range(1, self._n + 1))
            p[i - 1] = i + 1
            p[i] = i
            return self.element_class(self, [ZZ.one()] * self._n, self._P(p))
        temp = [ZZ.one()] * self._n
        temp[-1] = -ZZ.one()
        return self.element_class(self, temp, self._P.identity())
开发者ID:saraedum,项目名称:sage-renamed,代码行数:24,代码来源:colored_permutations.py

示例8: cardinality

# 需要导入模块: from sage.rings.all import ZZ [as 别名]
# 或者: from sage.rings.all.ZZ import one [as 别名]
    def cardinality(self):
        r"""
        Return the cardinality of ``self``, which is `\infty`.

        EXAMPLES::

            sage: F = FreeMonoid(2005, 'a')
            sage: F.cardinality()
            +Infinity
        """
        if self.__ngens == 0:
            from sage.rings.all import ZZ
            return ZZ.one()
        from sage.rings.infinity import infinity
        return infinity
开发者ID:saraedum,项目名称:sage-renamed,代码行数:17,代码来源:free_monoid.py

示例9: F

# 需要导入模块: from sage.rings.all import ZZ [as 别名]
# 或者: from sage.rings.all.ZZ import one [as 别名]
    def F(self):
        """
        Return the degree of the residue field extension of this valuation
        over the Gauss valuation, i.e., 1.

        EXAMPLES::

            sage: R.<u> = Qq(4,5)
            sage: S.<x> = R[]
            sage: v = GaussValuation(S)
            sage: v.F()
            1

        """
        from sage.rings.all import ZZ
        return ZZ.one()
开发者ID:saraedum,项目名称:sage-renamed,代码行数:18,代码来源:gauss_valuation.py

示例10: E

# 需要导入模块: from sage.rings.all import ZZ [as 别名]
# 或者: from sage.rings.all.ZZ import one [as 别名]
    def E(self):
        """
        Return the ramification index of this valuation over its underlying
        Gauss valuation, i.e., 1.

        EXAMPLES::

            sage: R.<u> = Qq(4,5)
            sage: S.<x> = R[]
            sage: v = GaussValuation(S)
            sage: v.E()
            1

        """
        from sage.rings.all import ZZ
        return ZZ.one()
开发者ID:saraedum,项目名称:sage-renamed,代码行数:18,代码来源:gauss_valuation.py

示例11: ConstantFormsSpaceFunctor

# 需要导入模块: from sage.rings.all import ZZ [as 别名]
# 或者: from sage.rings.all.ZZ import one [as 别名]
def ConstantFormsSpaceFunctor(group):
    r"""
    Construction functor for the space of constant forms.

    When determining a common parent between a ring
    and a forms ring or space this functor is first
    applied to the ring.

    EXAMPLES::

        sage: from sage.modular.modform_hecketriangle.functors import (ConstantFormsSpaceFunctor, FormsSpaceFunctor)
        sage: ConstantFormsSpaceFunctor(4) == FormsSpaceFunctor("holo", 4, 0, 1)
        True
        sage: ConstantFormsSpaceFunctor(4)
        ModularFormsFunctor(n=4, k=0, ep=1)
    """
    return FormsSpaceFunctor("holo", group, QQ.zero(), ZZ.one())
开发者ID:mcognetta,项目名称:sage,代码行数:19,代码来源:functors.py

示例12: _element_constructor_

# 需要导入模块: from sage.rings.all import ZZ [as 别名]
# 或者: from sage.rings.all.ZZ import one [as 别名]
    def _element_constructor_(self, x):
        """
        Construct an element of ``self`` from ``x``.

        TESTS::

            sage: S = SignedPermutations(3)
            sage: x = S([(+1,1), (-1,3), (-1,2)]); x
            [1, -3, -2]
            sage: x == S([[+1,-1,-1], [1,3,2]])
            True
            sage: x == S([1, -3, -2])
            True
        """
        if isinstance(x, list):
            if isinstance(x[0], tuple):
                c = []
                p = []
                for k in x:
                    if len(k) != 2:
                        raise ValueError("input must be pairs (sign, element)")
                    if k[0] != 1 and k[0] != -1:
                        raise ValueError("the sign must be +1 or -1")
                    c.append(ZZ(k[0]))
                    p.append(k[1])
                return self.element_class(self, c, self._P(p))

            if len(x) == self._n:
                c = []
                p = []
                one = ZZ.one()
                for v in x:
                    if v > 0:
                        c.append(one)
                        p.append(v)
                    else:
                        c.append(-one)
                        p.append(-v)
                return self.element_class(self, c, self._P(p))

            if len(x) != 2:
                raise ValueError("input must be a pair of a list of signs and a permutation")
            if any(s != 1 and s != -1 for s in x[0]):
                raise ValueError("the sign must be +1 or -1")
            return self.element_class(self, [ZZ(v) for v in x[0]], self._P(x[1]))
开发者ID:saraedum,项目名称:sage-renamed,代码行数:47,代码来源:colored_permutations.py

示例13: Birkhoff_polytope

# 需要导入模块: from sage.rings.all import ZZ [as 别名]
# 或者: from sage.rings.all.ZZ import one [as 别名]
    def Birkhoff_polytope(self, n):
        """
        Return the Birkhoff polytope with `n!` vertices.

        The vertices of this polyhedron are the (flattened) `n` by `n`
        permutation matrices. So the ambient vector space has dimension `n^2`
        but the dimension of the polyhedron is `(n-1)^2`.

        INPUT:

        - ``n`` -- a positive integer giving the size of the permutation matrices.

        .. SEEALSO::

            :meth:`sage.matrix.matrix2.Matrix.as_sum_of_permutations` -- return
            the current matrix as a sum of permutation matrices

        EXAMPLES::

            sage: b3 = polytopes.Birkhoff_polytope(3)
            sage: b3.f_vector()
            (1, 6, 15, 18, 9, 1)
            sage: print b3.ambient_dim(), b3.dim()
            9 4
            sage: b3.is_lattice_polytope()
            True
            sage: p3 = b3.ehrhart_polynomial()     # optional - latte_int
            sage: p3                               # optional - latte_int
            1/8*t^4 + 3/4*t^3 + 15/8*t^2 + 9/4*t + 1
            sage: [p3(i) for i in [1,2,3,4]]       # optional - latte_int
            [6, 21, 55, 120]
            sage: [len((i*b3).integral_points()) for i in [1,2,3,4]]
            [6, 21, 55, 120]

            sage: b4 = polytopes.Birkhoff_polytope(4)
            sage: print b4.n_vertices(), b4.ambient_dim(), b4.dim()
            24 16 9
        """
        from itertools import permutations
        verts = []
        for p in permutations(range(n)):
            verts.append( [ZZ.one() if p[i]==j else ZZ.zero() for j in range(n) for i in range(n) ] )
        return Polyhedron(vertices=verts, base_ring=ZZ)
开发者ID:Findstat,项目名称:sage,代码行数:45,代码来源:library.py

示例14: cardinality

# 需要导入模块: from sage.rings.all import ZZ [as 别名]
# 或者: from sage.rings.all.ZZ import one [as 别名]
    def cardinality(self):
        """
        Return the cardinality of ``self``.

        EXAMPLES::

            sage: IntegerVectors(3, 3, min_part=1).cardinality()
            1
            sage: IntegerVectors(5, 3, min_part=1).cardinality()
            6
            sage: IntegerVectors(13, 4, max_part=4).cardinality()
            20
            sage: IntegerVectors(k=4, max_part=3).cardinality()
            256
            sage: IntegerVectors(k=3, min_part=2, max_part=4).cardinality()
            27
            sage: IntegerVectors(13, 4, min_part=2, max_part=4).cardinality()
            16
        """
        if self.k is None:
            if self.n is None:
                return PlusInfinity()
            if ('max_length' not in self.constraints
                    and self.constraints.get('min_part', 0) <= 0):
                return PlusInfinity()
        elif ('max_part' in self.constraints
                and self.constraints['max_part'] != PlusInfinity()):
            if (self.n is None and len(self.constraints) == 2
                    and 'min_part' in self.constraints
                    and self.constraints['min_part'] >= 0):
                num = self.constraints['max_part'] - self.constraints['min_part'] + 1
                return Integer(num ** self.k)
            if len(self.constraints) == 1:
                m = self.constraints['max_part']
                if self.n is None:
                    return Integer((m + 1) ** self.k)
                if m >= self.n:
                    return Integer(binomial(self.n + self.k - 1, self.n))
                # do by inclusion / exclusion on the number
                # i of parts greater than m
                return Integer(sum( (-1)**i * binomial(self.n+self.k-1-i*(m+1), self.k-1) \
                    * binomial(self.k,i) for i in range(self.n/(m+1)+1) ))
        return ZZ.sum(ZZ.one() for x in self)
开发者ID:saraedum,项目名称:sage-renamed,代码行数:45,代码来源:integer_vector.py

示例15: long_element

# 需要导入模块: from sage.rings.all import ZZ [as 别名]
# 或者: from sage.rings.all.ZZ import one [as 别名]
    def long_element(self, index_set=None):
        """
        Return the longest element of ``self``, or of the
        parabolic subgroup corresponding to the given ``index_set``.

        INPUT:

        - ``index_set`` -- (optional) a subset (as a list or iterable)
          of the nodes of the indexing set

        EXAMPLES::

            sage: S = SignedPermutations(4)
            sage: S.long_element()
            [-4, -3, -2, -1]
        """
        if index_set is not None:
            return super(SignedPermutations, self).long_element()
        p = range(self._n, 0, -1)
        return self.element_class(self, [-ZZ.one()] * self._n, self._P(p))
开发者ID:Babyll,项目名称:sage,代码行数:22,代码来源:colored_permutations.py


注:本文中的sage.rings.all.ZZ.one方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。