当前位置: 首页>>代码示例>>Python>>正文


Python ZZ.is_integral方法代码示例

本文整理汇总了Python中sage.rings.all.ZZ.is_integral方法的典型用法代码示例。如果您正苦于以下问题:Python ZZ.is_integral方法的具体用法?Python ZZ.is_integral怎么用?Python ZZ.is_integral使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sage.rings.all.ZZ的用法示例。


在下文中一共展示了ZZ.is_integral方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: is_cm_j_invariant

# 需要导入模块: from sage.rings.all import ZZ [as 别名]
# 或者: from sage.rings.all.ZZ import is_integral [as 别名]
def is_cm_j_invariant(j, method='new'):
    """
    Return whether or not this is a CM `j`-invariant.

    INPUT:

    - ``j`` -- an element of a number field `K`

    OUTPUT:

    A pair (bool, (d,f)) which is either (False, None) if `j` is not a
    CM j-invariant or (True, (d,f)) if `j` is the `j`-invariant of the
    imaginary quadratic order of discriminant `D=df^2` where `d` is
    the associated fundamental discriminant and `f` the index.

    .. note::

       The current implementation makes use of the classification of
       all orders of class number up to 100, and hence will raise an
       error if `j` is an algebraic integer of degree greater than
       this.  It would be possible to implement a more general
       version, using the fact that `d` must be supported on the
       primes dividing the discriminant of the minimal polynomial of
       `j`.

    EXAMPLES::

        sage: from sage.schemes.elliptic_curves.cm import is_cm_j_invariant
        sage: is_cm_j_invariant(0)
        (True, (-3, 1))
        sage: is_cm_j_invariant(8000)
        (True, (-8, 1))

        sage: K.<a> = QuadraticField(5)
        sage: is_cm_j_invariant(282880*a + 632000)
        (True, (-20, 1))
        sage: K.<a> = NumberField(x^3 - 2)
        sage: is_cm_j_invariant(31710790944000*a^2 + 39953093016000*a + 50337742902000)
        (True, (-3, 6))

    TESTS::

        sage: from sage.schemes.elliptic_curves.cm import is_cm_j_invariant
        sage: all([is_cm_j_invariant(j) == (True, (d,f)) for d,f,j in cm_j_invariants_and_orders(QQ)])
        True

    """
    # First we check that j is an algebraic number:

    from sage.rings.all import NumberFieldElement, NumberField
    if not isinstance(j, NumberFieldElement) and not j in QQ:
        raise NotImplementedError("is_cm_j_invariant() is only implemented for number field elements")

    # for j in ZZ we have a lookup-table:

    if j in ZZ:
        j = ZZ(j)
        table = dict([(jj,(d,f)) for d,f,jj in cm_j_invariants_and_orders(QQ)])
        if j in table:
            return True, table[j]
        return False, None

    # Otherwise if j is in Q then it is not integral so is not CM:

    if j in QQ:
        return False, None

    # Now j has degree at least 2.  If it is not integral so is not CM:

    if not j.is_integral():
        return False, None

    # Next we find its minimal polynomial and degree h, and if h is
    # less than the degree of j.parent() we recreate j as an element
    # of Q(j):

    jpol = PolynomialRing(QQ,'x')([-j,1]) if j in QQ else j.absolute_minpoly()
    h = jpol.degree()

    # This will be used as a fall-back if we cannot determine the
    # result using local data.  For this to be necessary there would
    # have to be very few primes of degree 1 and norm under 1000,
    # since we only need to find one prime of degree 1, good
    # reduction for which a_P is nonzero.
    if method=='old':
        if h>100:
            raise NotImplementedError("CM data only available for class numbers up to 100")
        for d,f in cm_orders(h):
            if jpol == hilbert_class_polynomial(d*f**2):
                return True, (d,f)
        return False, None

    # replace j by a clone whose parent is Q(j), if necessary:

    K = j.parent()
    if h < K.absolute_degree():
        K = NumberField(jpol, 'j')
        j = K.gen()

    # Construct an elliptic curve with j-invariant j, with
#.........这里部分代码省略.........
开发者ID:saraedum,项目名称:sage-renamed,代码行数:103,代码来源:cm.py


注:本文中的sage.rings.all.ZZ.is_integral方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。