本文整理汇总了Python中sage.rings.all.ZZ.n方法的典型用法代码示例。如果您正苦于以下问题:Python ZZ.n方法的具体用法?Python ZZ.n怎么用?Python ZZ.n使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sage.rings.all.ZZ
的用法示例。
在下文中一共展示了ZZ.n方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: lseries
# 需要导入模块: from sage.rings.all import ZZ [as 别名]
# 或者: from sage.rings.all.ZZ import n [as 别名]
def lseries(self, num_prec=None, max_imaginary_part=0, max_asymp_coeffs=40):
r"""
Return the L-series of ``self`` if ``self`` is modular and holomorphic.
Note: This relies on the (pari) based function ``Dokchitser``.
INPUT:
- ``num_prec`` -- An integer denoting the to-be-used numerical precision.
If integer ``num_prec=None`` (default) the default
numerical precision of the parent of ``self`` is used.
- ``max_imaginary_part`` -- A real number (default: 0), indicating up to which
imaginary part the L-series is going to be studied.
- ``max_asymp_coeffs`` -- An integer (default: 40).
OUTPUT:
An interface to Tim Dokchitser's program for computing L-series, namely
the series given by the Fourier coefficients of ``self``.
EXAMPLES::
sage: from sage.modular.modform.eis_series import eisenstein_series_lseries
sage: from sage.modular.modform_hecketriangle.space import ModularForms
sage: f = ModularForms(n=3, k=4).E4()/240
sage: L = f.lseries()
sage: L
L-series associated to the modular form 1/240 + q + 9*q^2 + 28*q^3 + 73*q^4 + O(q^5)
sage: L.conductor
1
sage: L(1).prec()
53
sage: L.check_functional_equation() < 2^(-50)
True
sage: L(1)
-0.0304484570583...
sage: abs(L(1) - eisenstein_series_lseries(4)(1)) < 2^(-53)
True
sage: L.derivative(1, 1)
-0.0504570844798...
sage: L.derivative(1, 2)/2
-0.0350657360354...
sage: L.taylor_series(1, 3)
-0.0304484570583... - 0.0504570844798...*z - 0.0350657360354...*z^2 + O(z^3)
sage: coeffs = f.q_expansion_vector(min_exp=0, max_exp=20, fix_d=True)
sage: sum([coeffs[k]*k^(-10) for k in range(1,len(coeffs))]).n(53)
1.00935215408...
sage: L(10)
1.00935215649...
sage: f = ModularForms(n=6, k=4).E4()
sage: L = f.lseries(num_prec=200)
sage: L.conductor
3
sage: L.check_functional_equation() < 2^(-180)
True
sage: L(1)
-2.92305187760575399490414692523085855811204642031749788...
sage: L(1).prec()
200
sage: coeffs = f.q_expansion_vector(min_exp=0, max_exp=20, fix_d=True)
sage: sum([coeffs[k]*k^(-10) for k in range(1,len(coeffs))]).n(53)
24.2281438789...
sage: L(10).n(53)
24.2281439447...
sage: f = ModularForms(n=8, k=6, ep=-1).E6()
sage: L = f.lseries()
sage: L.check_functional_equation() < 2^(-45)
True
sage: L.taylor_series(3, 3)
0.000000000000... + 0.867197036668...*z + 0.261129628199...*z^2 + O(z^3)
sage: coeffs = f.q_expansion_vector(min_exp=0, max_exp=20, fix_d=True)
sage: sum([coeffs[k]*k^(-10) for k in range(1,len(coeffs))]).n(53)
-13.0290002560...
sage: L(10).n(53)
-13.0290184579...
sage: f = (ModularForms(n=17, k=24).Delta()^2) # long time
sage: L = f.lseries() # long time
sage: L.check_functional_equation() < 2^(-50) # long time
True
sage: L.taylor_series(12, 3) # long time
0.000683924755280... - 0.000875942285963...*z + 0.000647618966023...*z^2 + O(z^3)
sage: coeffs = f.q_expansion_vector(min_exp=0, max_exp=20, fix_d=True) # long time
sage: sum([coeffs[k]*k^(-30) for k in range(1,len(coeffs))]).n(53) # long time
9.31562890589...e-10
sage: L(30).n(53) # long time
9.31562890589...e-10
sage: f = ModularForms(n=infinity, k=2, ep=-1).f_i()
sage: L = f.lseries()
sage: L.check_functional_equation() < 2^(-50)
True
sage: L.taylor_series(1, 3)
0.000000000000... + 5.76543616701...*z + 9.92776715593...*z^2 + O(z^3)
sage: coeffs = f.q_expansion_vector(min_exp=0, max_exp=20, fix_d=True)
sage: sum([coeffs[k]*k^(-10) for k in range(1,len(coeffs))]).n(53)
-23.9781792831...
#.........这里部分代码省略.........