当前位置: 首页>>代码示例>>Python>>正文


Python ZZ.n方法代码示例

本文整理汇总了Python中sage.rings.all.ZZ.n方法的典型用法代码示例。如果您正苦于以下问题:Python ZZ.n方法的具体用法?Python ZZ.n怎么用?Python ZZ.n使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sage.rings.all.ZZ的用法示例。


在下文中一共展示了ZZ.n方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: lseries

# 需要导入模块: from sage.rings.all import ZZ [as 别名]
# 或者: from sage.rings.all.ZZ import n [as 别名]
    def lseries(self, num_prec=None, max_imaginary_part=0, max_asymp_coeffs=40):
        r"""
        Return the L-series of ``self`` if ``self`` is modular and holomorphic.
        Note: This relies on the (pari) based function ``Dokchitser``.

        INPUT:

        - ``num_prec``           -- An integer denoting the to-be-used numerical precision.
                                    If integer ``num_prec=None`` (default) the default
                                    numerical precision of the parent of ``self`` is used.

        - ``max_imaginary_part`` -- A real number (default: 0), indicating up to which
                                    imaginary part the L-series is going to be studied.

        - ``max_asymp_coeffs``   -- An integer (default: 40).

        OUTPUT:

        An interface to Tim Dokchitser's program for computing L-series, namely
        the series given by the Fourier coefficients of ``self``.

        EXAMPLES::

            sage: from sage.modular.modform.eis_series import eisenstein_series_lseries
            sage: from sage.modular.modform_hecketriangle.space import ModularForms
            sage: f = ModularForms(n=3, k=4).E4()/240
            sage: L = f.lseries()
            sage: L
            L-series associated to the modular form 1/240 + q + 9*q^2 + 28*q^3 + 73*q^4 + O(q^5)
            sage: L.conductor
            1
            sage: L(1).prec()
            53
            sage: L.check_functional_equation() < 2^(-50)
            True
            sage: L(1)
            -0.0304484570583...
            sage: abs(L(1) - eisenstein_series_lseries(4)(1)) < 2^(-53)
            True
            sage: L.derivative(1, 1)
            -0.0504570844798...
            sage: L.derivative(1, 2)/2
            -0.0350657360354...
            sage: L.taylor_series(1, 3)
            -0.0304484570583... - 0.0504570844798...*z - 0.0350657360354...*z^2 + O(z^3)
            sage: coeffs = f.q_expansion_vector(min_exp=0, max_exp=20, fix_d=True)
            sage: sum([coeffs[k]*k^(-10) for k in range(1,len(coeffs))]).n(53)
            1.00935215408...
            sage: L(10)
            1.00935215649...

            sage: f = ModularForms(n=6, k=4).E4()
            sage: L = f.lseries(num_prec=200)
            sage: L.conductor
            3
            sage: L.check_functional_equation() < 2^(-180)
            True
            sage: L(1)
            -2.92305187760575399490414692523085855811204642031749788...
            sage: L(1).prec()
            200
            sage: coeffs = f.q_expansion_vector(min_exp=0, max_exp=20, fix_d=True)
            sage: sum([coeffs[k]*k^(-10) for k in range(1,len(coeffs))]).n(53)
            24.2281438789...
            sage: L(10).n(53)
            24.2281439447...

            sage: f = ModularForms(n=8, k=6, ep=-1).E6()
            sage: L = f.lseries()
            sage: L.check_functional_equation() < 2^(-45)
            True
            sage: L.taylor_series(3, 3)
            0.000000000000... + 0.867197036668...*z + 0.261129628199...*z^2 + O(z^3)
            sage: coeffs = f.q_expansion_vector(min_exp=0, max_exp=20, fix_d=True)
            sage: sum([coeffs[k]*k^(-10) for k in range(1,len(coeffs))]).n(53)
            -13.0290002560...
            sage: L(10).n(53)
            -13.0290184579...

            sage: f = (ModularForms(n=17, k=24).Delta()^2)    # long time
            sage: L = f.lseries()    # long time
            sage: L.check_functional_equation() < 2^(-50)    # long time
            True
            sage: L.taylor_series(12, 3)    # long time
            0.000683924755280... - 0.000875942285963...*z + 0.000647618966023...*z^2 + O(z^3)
            sage: coeffs = f.q_expansion_vector(min_exp=0, max_exp=20, fix_d=True)    # long time
            sage: sum([coeffs[k]*k^(-30) for k in range(1,len(coeffs))]).n(53)    # long time
            9.31562890589...e-10
            sage: L(30).n(53)    # long time
            9.31562890589...e-10

            sage: f = ModularForms(n=infinity, k=2, ep=-1).f_i()
            sage: L = f.lseries()
            sage: L.check_functional_equation() < 2^(-50)
            True
            sage: L.taylor_series(1, 3)
            0.000000000000... + 5.76543616701...*z + 9.92776715593...*z^2 + O(z^3)
            sage: coeffs = f.q_expansion_vector(min_exp=0, max_exp=20, fix_d=True)
            sage: sum([coeffs[k]*k^(-10) for k in range(1,len(coeffs))]).n(53)
            -23.9781792831...
#.........这里部分代码省略.........
开发者ID:Babyll,项目名称:sage,代码行数:103,代码来源:element.py


注:本文中的sage.rings.all.ZZ.n方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。