本文整理汇总了Python中sage.rings.all.ZZ.coeffs方法的典型用法代码示例。如果您正苦于以下问题:Python ZZ.coeffs方法的具体用法?Python ZZ.coeffs怎么用?Python ZZ.coeffs使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sage.rings.all.ZZ
的用法示例。
在下文中一共展示了ZZ.coeffs方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _element_constructor_
# 需要导入模块: from sage.rings.all import ZZ [as 别名]
# 或者: from sage.rings.all.ZZ import coeffs [as 别名]
def _element_constructor_(self, x):
r"""
Return the element of the algebra ``self`` corresponding to ``x``.
EXAMPLES::
sage: S = SiegelModularFormsAlgebra(coeff_ring=QQ)
sage: B = SiegelModularFormsAlgebra(coeff_ring=ZZ).1
sage: S(B)
Igusa_6
sage: S(1/5)
1/5
sage: S(1/5).parent() is S
True
sage: S._element_constructor_(2.67)
Traceback (most recent call last):
...
TypeError: Unable to construct an element of Algebra of Siegel modular forms of degree 2 and even weights on Sp(4,Z) over Rational Field corresponding to 2.67000000000000
sage: S.base_extend(RR)._element_constructor_(2.67)
2.67000000000000
"""
if isinstance(x, (int, long)):
x = ZZ(x)
if isinstance(x, float):
from sage.rings.all import RR
x = RR(x)
if isinstance(x, complex):
from sage.rings.all import CC
x = CC(x)
if isinstance(x.parent(), SiegelModularFormsAlgebra_class):
d = dict((f, self.coeff_ring()(x[f])) for f in x.coeffs())
return self.element_class(parent=self, weight=x.weight(), coeffs=d, prec=x.prec(), name=x.name())
R = self.base_ring()
if R.has_coerce_map_from(x.parent()):
d = {(0, 0, 0): R(x)}
from sage.rings.all import infinity
return self.element_class(parent=self, weight=0, coeffs=d, prec=infinity, name=str(x))
else:
raise TypeError, "Unable to construct an element of %s corresponding to %s" %(self, x)