本文整理汇总了Python中pybrain.supervised.BackpropTrainer.trainEpochs方法的典型用法代码示例。如果您正苦于以下问题:Python BackpropTrainer.trainEpochs方法的具体用法?Python BackpropTrainer.trainEpochs怎么用?Python BackpropTrainer.trainEpochs使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pybrain.supervised.BackpropTrainer
的用法示例。
在下文中一共展示了BackpropTrainer.trainEpochs方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: EightBitBrain
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import trainEpochs [as 别名]
class EightBitBrain(object):
def __init__(self, dataset, inNodes, outNodes, hiddenNodes, classes):
self.__dataset = ClassificationDataSet(inNodes, classes-1)
for element in dataset:
self.addDatasetSample(self._binaryList(element[0]), element[1])
self.__dataset._convertToOneOfMany()
self.__network = buildNetwork(inNodes, hiddenNodes, self.__dataset.outdim, recurrent=True)
self.__trainer = BackpropTrainer(self.__network, learningrate = 0.01, momentum = 0.99, verbose = True)
self.__trainer.setData(self.__dataset)
def _binaryList(self, n):
return [int(c) for c in "{0:08b}".format(n)]
def addDatasetSample(self, argument, target):
self.__dataset.addSample(argument, target)
def train(self, epochs):
self.__trainer.trainEpochs(epochs)
def activate(self, information):
result = self.__network.activate(self._binaryList(information))
highest = (0,0)
for resultClass in range(len(result)):
if result[resultClass] > highest[0]:
highest = (result[resultClass], resultClass)
return highest[1]
示例2: train
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import trainEpochs [as 别名]
def train(self, params):
"""
Train TDNN network on buffered dataset history
:param params:
:return:
"""
# self.net = buildNetwork(params['encoding_num'] * params['num_lags'],
# params['num_cells'],
# params['encoding_num'],
# bias=True,
# outputbias=True)
ds = SupervisedDataSet(params['encoding_num'] * params['num_lags'],
params['encoding_num'])
history = self.window(self.history, params['learning_window'])
n = params['encoding_num']
for i in xrange(params['num_lags'], len(history)):
targets = numpy.zeros((1, n))
targets[0, :] = self.encoder.encode(history[i])
features = numpy.zeros((1, n * params['num_lags']))
for lags in xrange(params['num_lags']):
features[0, lags * n:(lags + 1) * n] = self.encoder.encode(
history[i - (lags + 1)])
ds.addSample(features, targets)
trainer = BackpropTrainer(self.net,
dataset=ds,
verbose=params['verbosity'] > 0)
if len(history) > 1:
trainer.trainEpochs(params['num_epochs'])
示例3: train
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import trainEpochs [as 别名]
def train(self, epochs=None):
trainer = BackpropTrainer(
self.net,
self.training_data
)
if epochs:
trainer.trainEpochs(epochs)
else:
trainer.trainUntilConvergence()
示例4: PerceptronPyBrainFilter
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import trainEpochs [as 别名]
class PerceptronPyBrainFilter(LinearPerceptron): # PYBRAIN
def __init__(self, *args, **kwargs):
super(PerceptronPyBrainFilter, self).__init__(*args, **kwargs)
# input, hidden_layers, output
self.perceptron = buildNetwork(self.num_last_measures, 0, 1, \
hiddenclass=pybrain.structure.modules.SigmoidLayer, #@UndefinedVariable \
outclass=pybrain.structure.modules.SigmoidLayer) #@UndefinedVariable
# input dimension, target dimension
self.pointer = 0
self.data = SupervisedDataSet(self.num_last_measures, 1)
for _i in xrange(self.dataset_size):
self.data.addSample([0] * self.num_last_measures, 0)
self.trainer = BackpropTrainer(self.perceptron, self.data, learningrate=self.learning_rate)
# This call does some internal initialization which is necessary before the net can finally
# be used: for example, the modules are sorted topologically.
self.perceptron.sortModules()
def train(self):
self.trainer.trainEpochs(1)
def guess(self, x):
return self.perceptron.activate(x)
def apply(self, x):
if len(self.lag_buffer) < self.lag - 1:
if len(self.last_measures) < self.num_last_measures:
self.last_measures.append(x)
else:
self.lag_buffer.append(x)
return x
self.lag_buffer.append(x)
#self.data.addSample(tuple(self.last_measures), self.lag_buffer[-1])
self.data['input'][self.pointer] = np.array(self.last_measures)
self.train()
if len(self.data) == self.dataset_size:
#del self.data[0]
#self.data.removeSample
#self.data.removeSample
pass
del self.last_measures[0]
self.last_measures.append(self.lag_buffer[0])
del self.lag_buffer[0]
return self.guess(self.last_measures)
示例5: network
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import trainEpochs [as 别名]
def network(dataset, input_list):
num_words = len(input_list)
#dividing the dataset into training and testing data
tstdata, trndata = dataset.splitWithProportion(0.25)
#building the network
net = RecurrentNetwork()
input_layer1 = LinearLayer(num_words, name='input_layer1')
input_layer2 = LinearLayer(num_words, name='input_layer2')
hidden_layer = TanhLayer(num_words, name='hidden_layer')
output_layer = SoftmaxLayer(num_words, name='output_layer')
net.addInputModule(input_layer1)
net.addInputModule(input_layer2)
net.addModule(hidden_layer)
net.addOutputModule(output_layer)
net.addConnection(FullConnection(input_layer1,
hidden_layer,
name='in1_to_hidden'))
net.addConnection(FullConnection(input_layer2, hidden_layer,
name='in2_to_hidden'))
net.addConnection(FullConnection(hidden_layer,
output_layer,
name='hidden_to_output'))
net.addConnection(FullConnection(input_layer1,
output_layer,
name='in1_to_out'))
net.addConnection(FullConnection(input_layer2,
output_layer,
name='in2_to_out'))
net.sortModules()
#backpropagation
trainer = BackpropTrainer(net, dataset=trndata,
momentum=0.1,
verbose=True,
weightdecay=0.01)
#error checking part
for i in range(10):
trainer.trainEpochs(1)
trnresult = percentError(trainer.testOnClassData(), trndata['target'])
tstresult = percentError(trainer.testOnClassData(dataset=tstdata),
tstdata['target'])
print "epoch: %4d" % trainer.totalepochs
print " train error: %5.10f%%" % trnresult
print " test error: %5.10f%%" % tstresult
return net
示例6: training_and_testing
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import trainEpochs [as 别名]
def training_and_testing():
nn= init_neural_network()
training = learning.get_labeled_data('%strain-images-idx3-ubyte.gz'%(database_folder),
'%strain-labels-idx1-ubyte.gz'%(database_folder)
,'%strainig'%(database_folder))
test = learning.get_labeled_data('%st10k-images-idx3-ubyte.gz'%(database_folder),
'%st10k-labels-idx1-ubyte.gz'%(database_folder),
'%stest'%(database_folder))
FEATURES = N_INPUT_LAYER
print("Caracteristicas a analizar: %i"%FEATURES)
testdata = ClassificationDataSet(FEATURES,1,nb_classes=OUTPUT_LAYER)
trainingdata = ClassificationDataSet(FEATURES,1,nb_classes=OUTPUT_LAYER)
for i in range(len(test['data'])):
testdata.addSample(test['data'][i],test['label'][i])
for j in range(len(training['data'])):
trainingdata.addSample(training['data'][j],training['label'][j])
trainingdata._convertToOneOfMany()
testdata._convertToOneOfMany()
trainer = BackpropTrainer(nn,dataset=trainingdata,momentum=MOMENTUM,verbose=True,
weightdecay=W_DECAY,learningrate=L_RATE,lrdecay=L_DECAY)
for i in range(EPOCHS):
trainer.trainEpochs(1)
trnresult = percentError(trainer.testOnClassData(),
trainingdata['class'])
tstresult = percentError(trainer.testOnClassData(
dataset=testdata), testdata['class'])
print("epoch: %4d" % trainer.totalepochs,
" train error: %5.2f%%" % trnresult,
" test error: %5.2f%%" % tstresult)
return nn
示例7: exists
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import trainEpochs [as 别名]
trndata._convertToOneOfMany( bounds=[0.,1.] )
tstdata._convertToOneOfMany( bounds=[0.,1.] )
if exists("params.xml"):
rnn = NetworkReader.readFrom('params.xml')
else:
# construct LSTM network - note the missing output bias
rnn = buildNetwork( trndata.indim, 5, trndata.outdim, hiddenclass=LSTMLayer, outclass=SoftmaxLayer, outputbias=False, recurrent=True)
# define a training method
trainer = BackpropTrainer( rnn, dataset=trndata, momentum=0.1, weightdecay=0.01)
# lets training (exclamation point)
for i in range(100):
# setting the ephocs for the training
trainer.trainEpochs( 2 )
# calculating the error
trnresult = (1.0-testOnSequenceData(rnn, trndata))
tstresult = (1.0-testOnSequenceData(rnn, tstdata))
#print("train error: %5.2f%%" % trnresult, ", test error: %5.2f%%" % tstresult)
# activating the softmax layer
out = rnn.activate(X_train[0])
out = out.argmax(axis=0)
index=0
# evaluate the net in test data
result = []
for x in X_test:
示例8: initializeTDNNnet
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import trainEpochs [as 别名]
random.seed(6)
net = initializeTDNNnet(nDimInput=X.shape[1],
nDimOutput=1, numNeurons=200)
predictedInput = np.zeros((len(sequence),))
targetInput = np.zeros((len(sequence),))
trueData = np.zeros((len(sequence),))
for i in xrange(nTrain, len(sequence)-predictionStep):
Y = net.activate(X[i])
if i % 336 == 0 and i > numLags:
ds = SupervisedDataSet(X.shape[1], 1)
for i in xrange(i-nTrain, i):
ds.addSample(X[i], T[i])
trainer = BackpropTrainer(net, dataset=ds, verbose=1)
trainer.trainEpochs(30)
predictedInput[i] = Y[-1]
targetInput[i] = sequence['data'][i+predictionStep]
trueData[i] = sequence['data'][i]
print "Iteration {} target input {:2.2f} predicted Input {:2.2f} ".format(
i, targetInput[i], predictedInput[i])
predictedInput = (predictedInput * stdSeq) + meanSeq
targetInput = (targetInput * stdSeq) + meanSeq
trueData = (trueData * stdSeq) + meanSeq
saveResultToFile(dataSet, predictedInput, 'tdnn')
plt.figure()
plt.plot(targetInput)
示例9: BackpropTrainer
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import trainEpochs [as 别名]
net.addOutputModule(output_layer)
net.addConnection(FullConnection(input_layer,
hidden_layer,
name='in_to_hidden'))
net.addConnection(FullConnection(hidden_layer,
output_layer,
name='hidden_to_out'))
net.sortModules()
#backpropagation
trainer = BackpropTrainer(net, dataset=trndata,
momentum=0.1,
verbose=True,
weightdecay=0.01)
#error checking part
for i in range(10):
trainer.trainEpochs(1)
trnresult = percentError(trainer.testOnClassData(), trndata['target'])
tstresult = percentError(trainer.testOnClassData(dataset=tstdata),
tstdata['target'])
trigram_file = open('trigram.txt', 'w')
trigram_file.writelines(["%s\n" % item for item in sorted_list])
word_file = open('word_list', 'w')
word_file.writelines(["%s\n" % item for item in input_list])
word_file.close()
trigram_file.close()
text_file.close()