本文整理汇总了Python中pybrain.supervised.BackpropTrainer.train方法的典型用法代码示例。如果您正苦于以下问题:Python BackpropTrainer.train方法的具体用法?Python BackpropTrainer.train怎么用?Python BackpropTrainer.train使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pybrain.supervised.BackpropTrainer
的用法示例。
在下文中一共展示了BackpropTrainer.train方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: training
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import train [as 别名]
def training(d):
"""
Builds a network and trains it.
"""
n = buildNetwork(d.indim, 4, d.outdim,recurrent=True)
t = BackpropTrainer(n, d, learningrate = 0.01, momentum = 0.99, verbose = True)
for epoch in range(0,500):
t.train()
return t
示例2: train
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import train [as 别名]
def train(self, train_data_set, test_data_set, epoch=100):
trainer = BackpropTrainer(self.network, train_data_set)
progress_bar = ProgressBar(epoch)
for i in range(epoch):
progress_bar.update(i+1)
time.sleep(0.01)
trainer.train()
return trainer.testOnData(test_data_set, verbose=True)
示例3: train_network
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import train [as 别名]
def train_network(d, iterations):
print("Training")
n = buildNetwork(d.indim, 4, d.outdim, bias=True)
t = BackpropTrainer(
n,
d,
learningrate=0.01,
momentum=0.99,
verbose=False)
for epoch in range(iterations):
t.train()
return n
示例4: trained_cat_dog_RFCNN
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import train [as 别名]
def trained_cat_dog_RFCNN():
n = RecurrentNetwork()
d = get_cat_dog_trainset()
input_size = d.getDimension('input')
n.addInputModule(LinearLayer(input_size, name='in'))
n.addModule(SigmoidLayer(input_size+1500, name='hidden'))
n.addOutputModule(LinearLayer(2, name='out'))
n.addConnection(FullConnection(n['in'], n['hidden'], name='c1'))
n.addConnection(FullConnection(n['hidden'], n['out'], name='c2'))
n.addRecurrentConnection(FullConnection(n['out'], n['hidden'], name='nmc'))
n.sortModules()
t = BackpropTrainer(n, d, learningrate=0.0001)#, momentum=0.75)
count = 0
while True:
globErr = t.train()
print globErr
count += 1
if globErr < 0.01:
break
if count == 30:
break
exportCatDogRFCNN(n)
return n
示例5: trainedRNN
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import train [as 别名]
def trainedRNN():
n = RecurrentNetwork()
n.addInputModule(LinearLayer(4, name='in'))
n.addModule(SigmoidLayer(6, name='hidden'))
n.addOutputModule(LinearLayer(2, name='out'))
n.addConnection(FullConnection(n['in'], n['hidden'], name='c1'))
n.addConnection(FullConnection(n['hidden'], n['out'], name='c2'))
n.addRecurrentConnection(NMConnection(n['out'], n['out'], name='nmc'))
# n.addRecurrentConnection(FullConnection(n['out'], n['hidden'], inSliceFrom = 0, inSliceTo = 1, outSliceFrom = 0, outSliceTo = 3))
n.sortModules()
draw_connections(n)
d = getDatasetFromFile(root.path()+"/res/dataSet")
t = BackpropTrainer(n, d, learningrate=0.001, momentum=0.75)
t.trainOnDataset(d)
count = 0
while True:
globErr = t.train()
print globErr
if globErr < 0.01:
break
count += 1
if count == 50:
return trainedRNN()
# exportRNN(n)
draw_connections(n)
return n
示例6: trainedANN
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import train [as 别名]
def trainedANN():
n = FeedForwardNetwork()
n.addInputModule(LinearLayer(4, name='in'))
n.addModule(SigmoidLayer(6, name='hidden'))
n.addOutputModule(LinearLayer(2, name='out'))
n.addConnection(FullConnection(n['in'], n['hidden'], name='c1'))
n.addConnection(FullConnection(n['hidden'], n['out'], name='c2'))
n.sortModules()
draw_connections(n)
# d = generateTrainingData()
d = getDatasetFromFile(root.path()+"/res/dataSet")
t = BackpropTrainer(n, d, learningrate=0.001, momentum=0.75)
t.trainOnDataset(d)
# FIXME: I'm not sure the recurrent ANN is going to converge
# so just training for fixed number of epochs
count = 0
while True:
globErr = t.train()
print globErr
if globErr < 0.01:
break
count += 1
if count == 20:
return trainedANN()
exportANN(n)
draw_connections(n)
return n
示例7: trained_cat_dog_ANN
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import train [as 别名]
def trained_cat_dog_ANN():
n = FeedForwardNetwork()
d = get_cat_dog_trainset()
input_size = d.getDimension('input')
n.addInputModule(LinearLayer(input_size, name='in'))
n.addModule(SigmoidLayer(input_size+1500, name='hidden'))
n.addOutputModule(LinearLayer(2, name='out'))
n.addConnection(FullConnection(n['in'], n['hidden'], name='c1'))
n.addConnection(FullConnection(n['hidden'], n['out'], name='c2'))
n.sortModules()
n.convertToFastNetwork()
print 'successful converted to fast network'
t = BackpropTrainer(n, d, learningrate=0.0001)#, momentum=0.75)
count = 0
while True:
globErr = t.train()
print globErr
count += 1
if globErr < 0.01:
break
if count == 30:
break
exportCatDogANN(n)
return n
示例8: train
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import train [as 别名]
def train():
f = open('train.csv', 'r')
csv_reader = csv.reader(f)
dataset = SupervisedDataSet(64, 1)
for d in csv_reader:
dataset.addSample(d[0:64], d[64])
network = buildNetwork(64, 19, 1)
trainer = BackpropTrainer(network, dataset)
for i in range(100):
trainer.train()
NetworkWriter.writeToFile(network, "model.xml")
f.close()
示例9: __init__
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import train [as 别名]
class PredictorTrainer:
def __init__(self, euro_predictor):
self.euro_predictor = euro_predictor
self.trainer = BackpropTrainer(euro_predictor.net, euro_predictor.ds)
self.errors = []
def train(self, error):
self.trainer.train()
e = self.trainer.train()
errors = []
while e > error:
e = self.trainer.train()
errors.append(e)
print e
self.errors = errors
return errors
def determined_train(self, iterations):
self.trainer.train()
self.trainer.train()
errors = []
for i in range(iterations):
e = self.trainer.train()
errors.append(e)
print e
self.errors = errors
return errors
def plot_errors(self):
xs = [i for i in range(len(self.errors))]
ys = self.errors
plt.plot(xs, ys)
plt.show()
示例10: train
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import train [as 别名]
def train(self, data, iterations=NETWORK_ITERATIONS):
for item in data:
self.dataset.addSample(item[0], item[1])
trainer = BackpropTrainer(self.network, self.dataset, learningrate=NETWORK_LEARNING_RATE,
momentum=NETWORK_MOMENTUM)
error = 0
for i in xrange(iterations):
error = trainer.train()
print (i + 1), error
return error
示例11: train
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import train [as 别名]
def train():
f = open('train_tower.csv', 'r')
csvreader = csv.reader(f)
dataset = SupervisedDataSet(64, 2)
for d in csvreader:
if d[64] == '0':
dataset.addSample(d[0:64], [1, 0])
else:
dataset.addSample(d[0:64], [0, 1])
network = buildNetwork(64, 19, 2)
trainer = BackpropTrainer(network, dataset)
for i in range(100):
trainer.train()
trainer.testOnData(dataset, verbose=True)
NetworkWriter.writeToFile(network, "tower.xml")
f.close()
示例12: _train
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import train [as 别名]
def _train(X, Y, filename, epochs=50):
global nn
nn = buildNetwork(INPUT_SIZE, HIDDEN_LAYERS, OUTPUT_LAYER, bias=True, outclass=SoftmaxLayer)
ds = ClassificationDataSet(INPUT_SIZE, OUTPUT_LAYER)
for x, y in zip(X, Y):
ds.addSample(x, y)
trainer = BackpropTrainer(nn, ds)
for i in xrange(epochs):
error = trainer.train()
print "Epoch: %d, Error: %7.4f" % (i+1, error)
# trainer.trainUntilConvergence(verbose=True, maxEpochs=epochs, continueEpochs=10)
if filename:
NetworkWriter.writeToFile(nn, 'data/' + filename + '.nn')
示例13: training
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import train [as 别名]
def training(self,d):
"""
Builds a network ,trains and returns it
"""
self.net = FeedForwardNetwork()
inLayer = LinearLayer(4) # 4 inputs
hiddenLayer = SigmoidLayer(3) # 5 neurons on hidden layer with sigmoid function
outLayer = LinearLayer(2) # 2 neuron as output layer
"add layers to NN"
self.net.addInputModule(inLayer)
self.net.addModule(hiddenLayer)
self.net.addOutputModule(outLayer)
"create connections"
in_to_hidden = FullConnection(inLayer, hiddenLayer)
hidden_to_out = FullConnection(hiddenLayer, outLayer)
"add connections"
self.net.addConnection(in_to_hidden)
self.net.addConnection(hidden_to_out)
"some unknown but necessary function :)"
self.net.sortModules()
print self.net
"generate big sized training set"
trainingSet = SupervisedDataSet(4,2)
trainArr = self.generate_training_set()
for ri in range(2000):
input = ((trainArr[0][ri][0],trainArr[0][ri][1],trainArr[0][ri][2],trainArr[0][ri][3]))
target = ((trainArr[1][ri][0],trainArr[1][ri][1]))
trainingSet.addSample(input, target)
"create backpropogation trainer"
t = BackpropTrainer(self.net,d,learningrate=0.00001, momentum=0.99)
while True:
globErr = t.train()
print "global error:", globErr
if globErr < 0.0001:
break
return self.net
示例14: trainedLSTMNN
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import train [as 别名]
def trainedLSTMNN():
"""
n = RecurrentNetwork()
inp = LinearLayer(100, name = 'input')
hid = LSTMLayer(30, name='hidden')
out = LinearLayer(1, name='output')
#add modules
n.addOutputModule(out)
n.addInputModule(inp)
n.addModule(hid)
#add connections
n.addConnection(FullConnection(inp, hid))
n.addConnection(FullConnection(hid, out))
n.addRecurrentConnection(FullConnection(hid, hid))
n.sortModules()
"""
n = buildNetwork(100, 50, 1, hiddenclass = LSTMLayer, outputbias=False, recurrent = True)
print "Network created"
d = load1OrderDataSet()
print "Data loaded"
t = BackpropTrainer(n, d, learningrate=0.001, momentum=0.75)
# FIXME: I'm not sure the recurrent ANN is going to converge
# so just training for fixed number of epochs
print "Learning started"
count = 0
while True:
globErr = t.train()
print "iteration #", count," error = ", globErr
if globErr < 0.1:
break
count = count + 1
# if (count == 60):
# break
# for i in range(100):
# print t.train()
exportANN(n)
return n
示例15: trained3ONN
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import train [as 别名]
def trained3ONN():
n = FeedForwardNetwork()
inp = LinearLayer(176850, name = 'input')
hid = LinearLayer(3, name='hidden')
out = LinearLayer(1, name='output')
#add modules
n.addOutputModule(out)
n.addInputModule(inp)
n.addModule(hid)
#add connections
n.addConnection(FullConnection(inp, hid, inSliceTo = 100, outSliceTo = 1))
n.addConnection(FullConnection(inp, hid, inSliceFrom = 100, inSliceTo = 5150, outSliceFrom = 1, outSliceTo = 2))
n.addConnection(FullConnection(inp, hid, inSliceFrom = 5150, outSliceFrom = 2))
n.addConnection(FullConnection(hid, out))
n.sortModules()
print "Network created"
d = load3OrderDataSet()
print "Data loaded"
t = BackpropTrainer(n, d, learningrate=0.001, momentum=0.75)
# FIXME: I'm not sure the recurrent ANN is going to converge
# so just training for fixed number of epochs
print "Learning started"
count = 0
while True:
globErr = t.train()
print "iteration #", count," error = ", globErr
if globErr < 0.01:
break
count = count + 1
# if (count == 100):
# break
# for i in range(100):
# print t.train()
exportANN(n)
return n