当前位置: 首页>>代码示例>>Python>>正文


Python BackpropTrainer.testOnClassData方法代码示例

本文整理汇总了Python中pybrain.supervised.BackpropTrainer.testOnClassData方法的典型用法代码示例。如果您正苦于以下问题:Python BackpropTrainer.testOnClassData方法的具体用法?Python BackpropTrainer.testOnClassData怎么用?Python BackpropTrainer.testOnClassData使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pybrain.supervised.BackpropTrainer的用法示例。


在下文中一共展示了BackpropTrainer.testOnClassData方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: network

# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import testOnClassData [as 别名]
def network(dataset, input_list):
    num_words = len(input_list)
    #dividing the dataset into training and testing data
    tstdata, trndata = dataset.splitWithProportion(0.25)

    #building the network
    net = RecurrentNetwork()
    input_layer1 = LinearLayer(num_words, name='input_layer1')
    input_layer2 = LinearLayer(num_words, name='input_layer2')
    hidden_layer = TanhLayer(num_words, name='hidden_layer')
    output_layer = SoftmaxLayer(num_words, name='output_layer')
    net.addInputModule(input_layer1)
    net.addInputModule(input_layer2)
    net.addModule(hidden_layer)
    net.addOutputModule(output_layer)
    net.addConnection(FullConnection(input_layer1,
                                     hidden_layer,
                                     name='in1_to_hidden'))
    net.addConnection(FullConnection(input_layer2, hidden_layer,
                                     name='in2_to_hidden'))
    net.addConnection(FullConnection(hidden_layer,
                                     output_layer,
                                     name='hidden_to_output'))
    net.addConnection(FullConnection(input_layer1,
                                     output_layer,
                                     name='in1_to_out'))
    net.addConnection(FullConnection(input_layer2,
                                     output_layer,
                                     name='in2_to_out'))
    net.sortModules()
    #backpropagation
    trainer = BackpropTrainer(net, dataset=trndata,
                              momentum=0.1,
                              verbose=True,
                              weightdecay=0.01)
    #error checking part
    for i in range(10):
        trainer.trainEpochs(1)
        trnresult = percentError(trainer.testOnClassData(), trndata['target'])
        tstresult = percentError(trainer.testOnClassData(dataset=tstdata),
                                 tstdata['target'])
        print "epoch: %4d" % trainer.totalepochs
        print "  train error: %5.10f%%" % trnresult
        print "  test error: %5.10f%%" % tstresult
    return net
开发者ID:reetesh11,项目名称:trigram,代码行数:47,代码来源:neuro_probb.py

示例2: training_and_testing

# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import testOnClassData [as 别名]
def training_and_testing():
    nn= init_neural_network()

    training = learning.get_labeled_data('%strain-images-idx3-ubyte.gz'%(database_folder),
                                '%strain-labels-idx1-ubyte.gz'%(database_folder)
                                ,'%strainig'%(database_folder))
    test = learning.get_labeled_data('%st10k-images-idx3-ubyte.gz'%(database_folder),
                                 '%st10k-labels-idx1-ubyte.gz'%(database_folder),
                                 '%stest'%(database_folder))

    FEATURES = N_INPUT_LAYER
    print("Caracteristicas a analizar: %i"%FEATURES)
    testdata = ClassificationDataSet(FEATURES,1,nb_classes=OUTPUT_LAYER)
    trainingdata = ClassificationDataSet(FEATURES,1,nb_classes=OUTPUT_LAYER)


    for i in range(len(test['data'])):
        testdata.addSample(test['data'][i],test['label'][i])
    for j in range(len(training['data'])):
        trainingdata.addSample(training['data'][j],training['label'][j])

    trainingdata._convertToOneOfMany()
    testdata._convertToOneOfMany()

    trainer = BackpropTrainer(nn,dataset=trainingdata,momentum=MOMENTUM,verbose=True,
                         weightdecay=W_DECAY,learningrate=L_RATE,lrdecay=L_DECAY)

    for i in range(EPOCHS):
        trainer.trainEpochs(1)
        trnresult = percentError(trainer.testOnClassData(),
                                 trainingdata['class'])
        tstresult = percentError(trainer.testOnClassData(
                                 dataset=testdata), testdata['class'])

        print("epoch: %4d" % trainer.totalepochs,
                     "  train error: %5.2f%%" % trnresult,
                     "  test error: %5.2f%%" % tstresult)
    return nn
开发者ID:rbalda,项目名称:neural_ocr,代码行数:40,代码来源:neural_ocr.py

示例3: __init__

# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import testOnClassData [as 别名]
class Classifier:
    def __init__(self,Xtrain,Ytrain):
        self._Xtrain=Xtrain
        self._Ytrain=Ytrain
        self.features=Xtrain.keys()
        
    def Train(self,feat_list=None,type='logreg',gamma=0.0,domeanstd=True,special_bias=None,add_bias=True, weight=None, class_instance=None, method='sigmoid',factor=10.0,arch=[10],
              cv_feats=None, cv_special_bias=None,cv_class_instance=None):
        if feat_list==None:
            feat_list=self.features
        self.feat_list=feat_list
        self._gamma=gamma
        self._type=type
        self._special_bias = special_bias
        self._add_bias = add_bias
        Xtrain_feats = np.ascontiguousarray(np.hstack((self._Xtrain[feat] for feat in feat_list)))
        self.m, self.std = classifier.feature_meanstd(Xtrain_feats)
        if domeanstd==False: #hacky, overwrite the things we computed
            self.m[:] = 0
            self.std[:] = 1
        Xtrain_feats -= self.m
        Xtrain_feats /= self.std
        if special_bias != None:
            Xtrain_feats = np.ascontiguousarray(np.hstack((Xtrain_feats, special_bias)))
        #CV
        if cv_feats!=None:
            cv_feats = np.ascontiguousarray(np.hstack((cv_feats[feat] for feat in feat_list)))
            cv_feats -= self.m
            cv_feats /= self.std
            if special_bias != None:
                cv_feats = np.ascontiguousarray(np.hstack((cv_feats, cv_special_bias)))
        '''Classifier stage'''
        if type=='linsvm':
            self.w, self.b = classifier.svm_onevsall(Xtrain_feats, self._Ytrain, self._gamma, weight = weight, special_bias=special_bias, add_bias=add_bias)
            return (self.w,self.b)
        elif type=='logreg':
            self.w, self.b = l2logreg_onevsall(Xtrain_feats, self._Ytrain, self._gamma, weight = weight, special_bias=special_bias, add_bias=add_bias)
            return (self.w,self.b)
        elif type=='logreg_atwv':
            self.w, self.b = Train_atwv(Xtrain_feats,class_instance=class_instance,weight=weight,special_bias=special_bias, add_bias=add_bias, method=method, 
                                        factor=factor, gamma=self._gamma, cv_class_instance=cv_class_instance, cv_feats=cv_feats)
        elif type=='nn_atwv':
            self._arch = arch
            self._weights_nn = Train_atwv_nn(Xtrain_feats,class_instance=class_instance,weight=weight,special_bias=special_bias, add_bias=add_bias, 
                                             arch=self._arch, method=method, factor=factor, gamma=self._gamma, cv_class_instance=cv_class_instance, cv_feats=cv_feats)
            #self._weights_nn = Train_atwv_nn(Xtrain_feats,class_instance=class_instance,weight=self._weights_nn,special_bias=special_bias, add_bias=add_bias, 
            #                                 arch=self._arch, method=method, factor=factor*10.0)
        elif type=='nn_debug':
            if mpi.COMM.Get_size() > 1:
                print 'Warning!!! Running NN training with MPI with more than one Node!'
                #FIXME: Collect X and Y at root to avoid this
#                 prob = mpi.COMM.gather(prob)
#                 if mpi.is_root():
#                     np.vstack(prob)
#                     #Train
#                     mpi.COMM.Bcast(self._nn)
#                 mpi.distribute(prob)                
            DS = ClassificationDataSet( Xtrain_feats.shape[1], 1, nb_classes=2 )
            #for i in range(Xtrain_feats.shape[0]):
            #    DS.addSample( Xtrain_feats[i,:], [self._Ytrain[i]] )
            DS.setField('input', Xtrain_feats)
            DS.setField('target', self._Ytrain[:,np.newaxis])
            DS._convertToOneOfMany()
            self._nn = buildNetwork(DS.indim, 10, DS.outdim, outclass=SoftmaxLayer, fast=True)
            self._nn_trainer = BackpropTrainer( self._nn, dataset=DS, momentum=0.1, verbose=True, weightdecay=gamma, learningrate=0.01, lrdecay=1.0)
            self._nn_trainer.trainOnDataset(DS,epochs=8)
            self._nn_trainer = BackpropTrainer( self._nn, dataset=DS, momentum=0.1, verbose=True, weightdecay=gamma, learningrate=0.001, lrdecay=1.0)
            self._nn_trainer.trainOnDataset(DS,epochs=8)
            self._nn_trainer = BackpropTrainer( self._nn, dataset=DS, momentum=0.1, verbose=True, weightdecay=gamma, learningrate=0.0001, lrdecay=1.0)
            self._nn_trainer.trainOnDataset(DS,epochs=5)
            return self._nn
    
    def Accuracy(self, X, Y, special_bias = None):
        X_feats = np.ascontiguousarray(np.hstack((X[self.feat_list[i]] for i in range(len(self.feat_list)))))
        X_feats -= self.m
        X_feats /= self.std
        if special_bias != None:
            X_feats = np.ascontiguousarray(np.hstack((X_feats, special_bias)))
        if self._type=='linsvm' or self._type=='logreg' or self._type=='logreg_atwv':
            self.test_accu = classifier.Evaluator.accuracy(Y, np.dot(X_feats,self.w)+self.b)
        elif self._type=='nn_atwv':
            pred = get_predictions_nn(X_feats, self._weights_nn, arch=[10])[0]
            pred[:,0] = 0.5
            self.test_accu = classifier.Evaluator.accuracy(Y, pred)
        else:
            DS = ClassificationDataSet( X_feats.shape[1], 1, nb_classes=2 )
            #for i in range(X_feats.shape[0]):
            #    DS.addSample( X_feats[i,:], [Y[i]] )
            DS.setField('input', X_feats)
            DS.setField('target', Y[:,np.newaxis])
            DS._convertToOneOfMany()
            predict,targts = self._nn_trainer.testOnClassData(DS, verbose=True,return_targets=True)
            self.test_accu = np.sum(np.array(predict)==np.array(targts))/float(len(targts))
        return self.test_accu
    
    def loss_multiclass_logreg(self, X, Y, special_bias=None):
        X_feats=np.hstack((X[self.feat_list[i]] for i in range(len(self.feat_list))))
        X_feats -= self.m
        X_feats /= self.std
        if special_bias != None:
#.........这里部分代码省略.........
开发者ID:OriolVinyals,项目名称:babel_main,代码行数:103,代码来源:Classifier.py

示例4: BackpropTrainer

# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import testOnClassData [as 别名]
net.addOutputModule(output_layer)
net.addConnection(FullConnection(input_layer,
                                 hidden_layer,
                                 name='in_to_hidden'))
net.addConnection(FullConnection(hidden_layer,
                                 output_layer,
                                 name='hidden_to_out'))
net.sortModules()

#backpropagation
trainer = BackpropTrainer(net, dataset=trndata,
                          momentum=0.1,
                          verbose=True,
                          weightdecay=0.01)
#error checking part
for i in range(10):
    trainer.trainEpochs(1)
    trnresult = percentError(trainer.testOnClassData(), trndata['target'])
    tstresult = percentError(trainer.testOnClassData(dataset=tstdata),
                             tstdata['target'])

trigram_file = open('trigram.txt', 'w')
trigram_file.writelines(["%s\n" % item for item in sorted_list])

word_file = open('word_list', 'w')
word_file.writelines(["%s\n" % item for item in input_list])

word_file.close()
trigram_file.close()
text_file.close()
开发者ID:reetesh11,项目名称:trigram,代码行数:32,代码来源:trigram.py

示例5: ClassificationDataSet

# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import testOnClassData [as 别名]
            leg = plt.legend([dot1, dot2], ['0','1'])
        ax = plt.gca().add_artist(leg)
        plt.show()
        """
    elif sys.argv[1] == 'nn':
        DS = ClassificationDataSet(165)
        training_data = np.array(training_data)
        training_target = np.vstack(np.array(training_target))
        print len(training_data[0])
        #print len(training_target[0])
        assert(training_data.shape[0] == training_target.shape[0])
        DS.setField('input', training_data)
        DS.setField('target', training_target)
        tstdata, trndata = DS.splitWithProportion(0.15)
        hidden_layer_neurons = (DS.indim+DS.outdim)/2
        rnn = buildNetwork(DS.indim,hidden_layer_neurons,DS.outdim,hiddenclass=LSTMLayer,outclass=SigmoidLayer,outputbias=False,recurrent=True)
        #print hidden_layer_neurons
        # define a training method
        trainer = BackpropTrainer(rnn,dataset=trndata, verbose=True) 
        trainer.trainUntilConvergence(verbose = True, validationProportion = 0.3, maxEpochs = 1000, continueEpochs = 10)

        print 'Percent Error on Test dataset: ' , percentError(trainer.testOnClassData(tstdata, verbose=True), tstdata['target'] )
        print 'Percent Error on Test dataset: ' , percentError(trainer.testOnClassData(tstdata, verbose=True), tstdata['target'] )
        #print 'Percent Error on Training dataset: ' , percentError(trainer.testOnClassData(trndata), trndata['target'] )
    else:
        print("Current classifier algorithms available: svm, knn, dt, kmeans, nn")
        sys.exit(1)

if running_tests:
    print "\nMax Accuracy: " + str(max(accuracy_arr))
开发者ID:anchigel,项目名称:ee202a,代码行数:32,代码来源:machine_learning.py


注:本文中的pybrain.supervised.BackpropTrainer.testOnClassData方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。