当前位置: 首页>>代码示例>>Python>>正文


Python BackpropTrainer.setData方法代码示例

本文整理汇总了Python中pybrain.supervised.BackpropTrainer.setData方法的典型用法代码示例。如果您正苦于以下问题:Python BackpropTrainer.setData方法的具体用法?Python BackpropTrainer.setData怎么用?Python BackpropTrainer.setData使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pybrain.supervised.BackpropTrainer的用法示例。


在下文中一共展示了BackpropTrainer.setData方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: EightBitBrain

# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import setData [as 别名]
class EightBitBrain(object):
    
    def __init__(self, dataset, inNodes, outNodes, hiddenNodes, classes):
        self.__dataset = ClassificationDataSet(inNodes, classes-1)
        for element in dataset:
            self.addDatasetSample(self._binaryList(element[0]), element[1])
        self.__dataset._convertToOneOfMany()
        self.__network = buildNetwork(inNodes, hiddenNodes, self.__dataset.outdim, recurrent=True)
        self.__trainer = BackpropTrainer(self.__network, learningrate = 0.01, momentum = 0.99, verbose = True)
        self.__trainer.setData(self.__dataset)

    def _binaryList(self, n):
        return [int(c) for c in "{0:08b}".format(n)]
    
    def addDatasetSample(self, argument, target):
        self.__dataset.addSample(argument, target)

    def train(self, epochs):
        self.__trainer.trainEpochs(epochs)
    
    def activate(self, information):
        result = self.__network.activate(self._binaryList(information))
        highest = (0,0)
        for resultClass in range(len(result)):
            if result[resultClass] > highest[0]:
                highest = (result[resultClass], resultClass)
        return highest[1]
开发者ID:oskanberg,项目名称:pyconomy,代码行数:29,代码来源:brains.py

示例2: Suite

# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import setData [as 别名]
class Suite(PyExperimentSuite):

  def reset(self, params, repetition):
    print params

    self.nDimInput = 3
    self.inputEncoder = PassThroughEncoder()

    if params['output_encoding'] == None:
      self.outputEncoder = PassThroughEncoder()
      self.nDimOutput = 1
    elif params['output_encoding'] == 'likelihood':
      self.outputEncoder = ScalarBucketEncoder()
      self.nDimOutput = self.outputEncoder.encoder.n

    if (params['dataset'] == 'nyc_taxi' or
            params['dataset'] == 'nyc_taxi_perturb_baseline'):
      self.dataset = NYCTaxiDataset(params['dataset'])
    else:
      raise Exception("Dataset not found")

    self.testCounter = 0
    self.resets = []
    self.iteration = 0

    # initialize LSTM network
    random.seed(6)
    if params['output_encoding'] == None:
      self.net = buildNetwork(self.nDimInput, params['num_cells'], self.nDimOutput,
                         hiddenclass=LSTMLayer, bias=True, outputbias=True, recurrent=True)
    elif params['output_encoding'] == 'likelihood':
      self.net = buildNetwork(self.nDimInput, params['num_cells'], self.nDimOutput,
                         hiddenclass=LSTMLayer, bias=True, outclass=SigmoidLayer, recurrent=True)

    self.trainer = BackpropTrainer(self.net,
                          dataset=SequentialDataSet(self.nDimInput, self.nDimOutput),
                          learningrate=0.01,
                          momentum=0,
                          verbose=params['verbosity'] > 0)

    (self.networkInput, self.targetPrediction, self.trueData) = \
      self.dataset.generateSequence(
      prediction_nstep=params['prediction_nstep'],
      output_encoding=params['output_encoding'],
      noise=params['noise'])


  def window(self, data, params):
    start = max(0, self.iteration - params['learning_window'])
    return data[start:self.iteration]


  def train(self, params, verbose=False):

    if params['reset_every_training']:
      if verbose:
        print 'create lstm network'

      random.seed(6)
      if params['output_encoding'] == None:
        self.net = buildNetwork(self.nDimInput, params['num_cells'], self.nDimOutput,
                           hiddenclass=LSTMLayer, bias=True, outputbias=True, recurrent=True)
      elif params['output_encoding'] == 'likelihood':
        self.net = buildNetwork(self.nDimInput, params['num_cells'], self.nDimOutput,
                           hiddenclass=LSTMLayer, bias=True, outclass=SigmoidLayer, recurrent=True)

    self.net.reset()

    ds = SequentialDataSet(self.nDimInput, self.nDimOutput)
    networkInput = self.window(self.networkInput, params)
    targetPrediction = self.window(self.targetPrediction, params)

    # prepare a training data-set using the history
    for i in xrange(len(networkInput)):
      ds.addSample(self.inputEncoder.encode(networkInput[i]),
                   self.outputEncoder.encode(targetPrediction[i]))

    if params['num_epochs'] > 1:
      trainer = RPropMinusTrainer(self.net, dataset=ds, verbose=verbose)

      if verbose:
        print " train LSTM on ", len(ds), " records for ", params['num_epochs'], " epochs "

      if len(networkInput) > 1:
        trainer.trainEpochs(params['num_epochs'])

    else:
      self.trainer.setData(ds)
      self.trainer.train()

    # run through the training dataset to get the lstm network state right
    self.net.reset()
    for i in xrange(len(networkInput)):
      self.net.activate(ds.getSample(i)[0])


  def iterate(self, params, repetition, iteration, verbose=True):
    self.iteration = iteration

    if self.iteration >= len(self.networkInput):
#.........这里部分代码省略.........
开发者ID:andrewmalta13,项目名称:nupic.research,代码行数:103,代码来源:run_lstm_suite.py

示例3: Suite

# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import setData [as 别名]

#.........这里部分代码省略.........
      self.net.reset()

    # prepare training dataset
    ds = SequentialDataSet(params['encoding_num'], params['encoding_num'])
    history = self.window(self.history, params)
    resets = self.window(self.resets, params)

    for i in xrange(1, len(history)):
      if not resets[i - 1]:
        ds.addSample(self.encoder.encode(history[i - 1]),
                     self.encoder.encode(history[i]))
      if resets[i]:
        ds.newSequence()

    print "Train LSTM network on buffered dataset of length ", len(history)
    if params['num_epochs'] > 1:
      trainer = RPropMinusTrainer(self.net,
                                  dataset=ds,
                                  verbose=params['verbosity'] > 0)

      if len(history) > 1:
        trainer.trainEpochs(params['num_epochs'])

      # run network on buffered dataset after training to get the state right
      self.net.reset()
      for i in xrange(len(history) - 1):
        symbol = history[i]
        output = self.net.activate(self.encoder.encode(symbol))
        self.encoder.classify(output, num=params['num_predictions'])

        if resets[i]:
          self.net.reset()
    else:
      self.trainer.setData(ds)
      self.trainer.train()

      # run network on buffered dataset after training to get the state right
      self.net.reset()
      for i in xrange(len(history) - 1):
        symbol = history[i]
        output = self.net.activate(self.encoder.encode(symbol))
        self.encoder.classify(output, num=params['num_predictions'])

        if resets[i]:
          self.net.reset()


  def killCells(self, killCellPercent):
    """
    kill a fraction of LSTM cells from the network
    :param killCellPercent:
    :return:
    """
    if killCellPercent <= 0:
      return

    inputLayer = self.net['in']
    lstmLayer = self.net['hidden0']

    numLSTMCell = lstmLayer.outdim
    numDead = round(killCellPercent * numLSTMCell)
    zombiePermutation = numpy.random.permutation(numLSTMCell)
    deadCells = zombiePermutation[0:numDead]

    # remove connections from input layer to dead LSTM cells
    connectionInputToHidden = self.net.connections[inputLayer][0]
开发者ID:rhyolight,项目名称:nupic.research,代码行数:70,代码来源:suite.py


注:本文中的pybrain.supervised.BackpropTrainer.setData方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。