本文整理汇总了Python中pybrain.supervised.BackpropTrainer.setData方法的典型用法代码示例。如果您正苦于以下问题:Python BackpropTrainer.setData方法的具体用法?Python BackpropTrainer.setData怎么用?Python BackpropTrainer.setData使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pybrain.supervised.BackpropTrainer
的用法示例。
在下文中一共展示了BackpropTrainer.setData方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: EightBitBrain
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import setData [as 别名]
class EightBitBrain(object):
def __init__(self, dataset, inNodes, outNodes, hiddenNodes, classes):
self.__dataset = ClassificationDataSet(inNodes, classes-1)
for element in dataset:
self.addDatasetSample(self._binaryList(element[0]), element[1])
self.__dataset._convertToOneOfMany()
self.__network = buildNetwork(inNodes, hiddenNodes, self.__dataset.outdim, recurrent=True)
self.__trainer = BackpropTrainer(self.__network, learningrate = 0.01, momentum = 0.99, verbose = True)
self.__trainer.setData(self.__dataset)
def _binaryList(self, n):
return [int(c) for c in "{0:08b}".format(n)]
def addDatasetSample(self, argument, target):
self.__dataset.addSample(argument, target)
def train(self, epochs):
self.__trainer.trainEpochs(epochs)
def activate(self, information):
result = self.__network.activate(self._binaryList(information))
highest = (0,0)
for resultClass in range(len(result)):
if result[resultClass] > highest[0]:
highest = (result[resultClass], resultClass)
return highest[1]
示例2: Suite
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import setData [as 别名]
class Suite(PyExperimentSuite):
def reset(self, params, repetition):
print params
self.nDimInput = 3
self.inputEncoder = PassThroughEncoder()
if params['output_encoding'] == None:
self.outputEncoder = PassThroughEncoder()
self.nDimOutput = 1
elif params['output_encoding'] == 'likelihood':
self.outputEncoder = ScalarBucketEncoder()
self.nDimOutput = self.outputEncoder.encoder.n
if (params['dataset'] == 'nyc_taxi' or
params['dataset'] == 'nyc_taxi_perturb_baseline'):
self.dataset = NYCTaxiDataset(params['dataset'])
else:
raise Exception("Dataset not found")
self.testCounter = 0
self.resets = []
self.iteration = 0
# initialize LSTM network
random.seed(6)
if params['output_encoding'] == None:
self.net = buildNetwork(self.nDimInput, params['num_cells'], self.nDimOutput,
hiddenclass=LSTMLayer, bias=True, outputbias=True, recurrent=True)
elif params['output_encoding'] == 'likelihood':
self.net = buildNetwork(self.nDimInput, params['num_cells'], self.nDimOutput,
hiddenclass=LSTMLayer, bias=True, outclass=SigmoidLayer, recurrent=True)
self.trainer = BackpropTrainer(self.net,
dataset=SequentialDataSet(self.nDimInput, self.nDimOutput),
learningrate=0.01,
momentum=0,
verbose=params['verbosity'] > 0)
(self.networkInput, self.targetPrediction, self.trueData) = \
self.dataset.generateSequence(
prediction_nstep=params['prediction_nstep'],
output_encoding=params['output_encoding'],
noise=params['noise'])
def window(self, data, params):
start = max(0, self.iteration - params['learning_window'])
return data[start:self.iteration]
def train(self, params, verbose=False):
if params['reset_every_training']:
if verbose:
print 'create lstm network'
random.seed(6)
if params['output_encoding'] == None:
self.net = buildNetwork(self.nDimInput, params['num_cells'], self.nDimOutput,
hiddenclass=LSTMLayer, bias=True, outputbias=True, recurrent=True)
elif params['output_encoding'] == 'likelihood':
self.net = buildNetwork(self.nDimInput, params['num_cells'], self.nDimOutput,
hiddenclass=LSTMLayer, bias=True, outclass=SigmoidLayer, recurrent=True)
self.net.reset()
ds = SequentialDataSet(self.nDimInput, self.nDimOutput)
networkInput = self.window(self.networkInput, params)
targetPrediction = self.window(self.targetPrediction, params)
# prepare a training data-set using the history
for i in xrange(len(networkInput)):
ds.addSample(self.inputEncoder.encode(networkInput[i]),
self.outputEncoder.encode(targetPrediction[i]))
if params['num_epochs'] > 1:
trainer = RPropMinusTrainer(self.net, dataset=ds, verbose=verbose)
if verbose:
print " train LSTM on ", len(ds), " records for ", params['num_epochs'], " epochs "
if len(networkInput) > 1:
trainer.trainEpochs(params['num_epochs'])
else:
self.trainer.setData(ds)
self.trainer.train()
# run through the training dataset to get the lstm network state right
self.net.reset()
for i in xrange(len(networkInput)):
self.net.activate(ds.getSample(i)[0])
def iterate(self, params, repetition, iteration, verbose=True):
self.iteration = iteration
if self.iteration >= len(self.networkInput):
#.........这里部分代码省略.........
示例3: Suite
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import setData [as 别名]
#.........这里部分代码省略.........
self.net.reset()
# prepare training dataset
ds = SequentialDataSet(params['encoding_num'], params['encoding_num'])
history = self.window(self.history, params)
resets = self.window(self.resets, params)
for i in xrange(1, len(history)):
if not resets[i - 1]:
ds.addSample(self.encoder.encode(history[i - 1]),
self.encoder.encode(history[i]))
if resets[i]:
ds.newSequence()
print "Train LSTM network on buffered dataset of length ", len(history)
if params['num_epochs'] > 1:
trainer = RPropMinusTrainer(self.net,
dataset=ds,
verbose=params['verbosity'] > 0)
if len(history) > 1:
trainer.trainEpochs(params['num_epochs'])
# run network on buffered dataset after training to get the state right
self.net.reset()
for i in xrange(len(history) - 1):
symbol = history[i]
output = self.net.activate(self.encoder.encode(symbol))
self.encoder.classify(output, num=params['num_predictions'])
if resets[i]:
self.net.reset()
else:
self.trainer.setData(ds)
self.trainer.train()
# run network on buffered dataset after training to get the state right
self.net.reset()
for i in xrange(len(history) - 1):
symbol = history[i]
output = self.net.activate(self.encoder.encode(symbol))
self.encoder.classify(output, num=params['num_predictions'])
if resets[i]:
self.net.reset()
def killCells(self, killCellPercent):
"""
kill a fraction of LSTM cells from the network
:param killCellPercent:
:return:
"""
if killCellPercent <= 0:
return
inputLayer = self.net['in']
lstmLayer = self.net['hidden0']
numLSTMCell = lstmLayer.outdim
numDead = round(killCellPercent * numLSTMCell)
zombiePermutation = numpy.random.permutation(numLSTMCell)
deadCells = zombiePermutation[0:numDead]
# remove connections from input layer to dead LSTM cells
connectionInputToHidden = self.net.connections[inputLayer][0]