本文整理汇总了Python中pybrain.supervised.BackpropTrainer.testOnData方法的典型用法代码示例。如果您正苦于以下问题:Python BackpropTrainer.testOnData方法的具体用法?Python BackpropTrainer.testOnData怎么用?Python BackpropTrainer.testOnData使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pybrain.supervised.BackpropTrainer
的用法示例。
在下文中一共展示了BackpropTrainer.testOnData方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: generate_and_test_nn
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import testOnData [as 别名]
def generate_and_test_nn():
d = load_training_set()
n = buildNetwork(d.indim, 13, d.outdim, hiddenclass=LSTMLayer, outclass=SoftmaxLayer, outputbias=False, recurrent=True)
t = BackpropTrainer(n, learningrate=0.01, momentum=0.99, verbose=True)
t.trainOnDataset(d, 1000)
t.testOnData(verbose=True)
return (n, d)
示例2: testOldTraining
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import testOnData [as 别名]
def testOldTraining(hidden=15, n=None):
d = XORDataSet()
if n is None:
n = buildNetwork(d.indim, hidden, d.outdim, recurrent=False)
t = BackpropTrainer(n, learningrate=0.01, momentum=0., verbose=False)
t.trainOnDataset(d, 250)
t.testOnData(verbose=True)
示例3: initializeNetwork
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import testOnData [as 别名]
def initializeNetwork(self):
can1 = NNTrainData.NNTrainData(cv2.imread('NNTrain/can1.png'), self.encodingDict["can"])
can2 = NNTrainData.NNTrainData(cv2.imread('NNTrain/can2.png'), self.encodingDict["can"])
can3 = NNTrainData.NNTrainData(cv2.imread('NNTrain/can3.png'), self.encodingDict["can"])
stain1 = NNTrainData.NNTrainData(cv2.imread('NNTrain/stain1.png'), self.encodingDict["stain"])
stain2 = NNTrainData.NNTrainData(cv2.imread('NNTrain/stain2.png'), self.encodingDict["stain"])
stain3 = NNTrainData.NNTrainData(cv2.imread('NNTrain/stain3.png'), self.encodingDict["stain"])
dirt1 = NNTrainData.NNTrainData(cv2.imread('NNTrain/dirt1.png'), self.encodingDict["dirt"])
dirt2 = NNTrainData.NNTrainData(cv2.imread('NNTrain/dirt2.png'), self.encodingDict["dirt"])
dirt3 = NNTrainData.NNTrainData(cv2.imread('NNTrain/dirt3.png'), self.encodingDict["dirt"])
self.trainData.append(can1)
self.trainData.append(can2)
self.trainData.append(can3)
self.trainData.append(stain1)
self.trainData.append(stain2)
self.trainData.append(stain3)
self.trainData.append(dirt1)
self.trainData.append(dirt2)
self.trainData.append(dirt3)
for x in self.trainData:
x.prepareTrainData()
self.net = buildNetwork(4, 3, 3, hiddenclass=TanhLayer, outclass=SoftmaxLayer)
ds = SupervisedDataSet(4, 3)
for x in self.trainData:
ds.addSample((x.contours/100.0, x.color[0]/1000.0, x.color[1]/1000.0, x.color[2]/1000.0), x.output)
trainer = BackpropTrainer(self.net, momentum=0.1, verbose=True, weightdecay=0.01)
trainer.trainOnDataset(ds, 1000)
trainer.testOnData(verbose=True)
print "\nSiec nauczona\n"
示例4: testTraining
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import testOnData [as 别名]
def testTraining():
d = PrimesDataSet()
d._convertToOneOfMany()
n = buildNetwork(d.indim, 8, d.outdim, recurrent=True)
t = BackpropTrainer(n, learningrate = 0.01, momentum = 0.99, verbose = True)
t.trainOnDataset(d, 1000)
t.testOnData(verbose=True)
for i in range(15):
print "Guess: %s || Real: %s" % (str(n.activate(i)), str(i in d.generatePrimes(10)))
print d
示例5: testTraining
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import testOnData [as 别名]
def testTraining():
print "Reading data"
d = XORDataSet()
traind,testd = d.splitWithProportion(0.8)
print "Building network"
n = buildNetwork(traind.indim, 4, traind.outdim, recurrent=True)
print "Training"
t = BackpropTrainer(n, learningrate = 0.01, momentum = 0.99, verbose = True)
t.trainOnDataset(traind,100)
testd = XORDataSet(begin=60000,end=80000)
print t.module.params
t.testOnData(testd,verbose= True)
示例6: execute
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import testOnData [as 别名]
def execute(self):
network = self.networkFactoryMethod()
trainer = BackpropTrainer(network, learningrate = self.learningrate, momentum = self.momentum)
trainer.trainOnDataset(self.datasetForTraining, self.epochs)
averageError = trainer.testOnData(self.datasetForTest)
self.collectedErrors.append(averageError)
return averageError
示例7: __init__
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import testOnData [as 别名]
def __init__(self, stock_to_predict, days_of_prediction = 10, days_of_training = 450):
self.number_of_days_before = 8
self.days_of_prediction = days_of_prediction
self.downloader = StockDownloader()
stock_training_data = self.downloader.download_stock(stock_to_predict, days_of_training, days_of_prediction)
self.stock_prediction_data = self.downloader.download_stock(stock_to_predict, days_of_prediction)
self.starting_price = self.stock_prediction_data[0]
self.dataset = StockSupervisedDataSet(self.number_of_days_before, stock_training_data)
self.network = buildNetwork(self.dataset.indim, 10, self.dataset.outdim, recurrent=True)
t = BackpropTrainer(self.network, learningrate = 0.00005, momentum=0., verbose = True)
t.trainOnDataset(self.dataset, 200)
t.testOnData(verbose= True)
self.starting_prices = self.dataset['input'][-1]
示例8: __init__
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import testOnData [as 别名]
def __init__(self):
self.code = {
'cat': [1, 0, 0],
'dust': [0, 1, 0],
'water': [0, 0, 1]
}
pack = 'media.images_train'
train_data = [
(Neuron(load(file_path(pack, 'cat1.png'))), self.code['cat']),
(Neuron(load(file_path(pack, 'cat2.png'))), self.code['cat']),
(Neuron(load(file_path(pack, 'cat3.png'))), self.code['cat']),
(Neuron(load(file_path(pack, 'dust1.png'))), self.code['dust']),
(Neuron(load(file_path(pack, 'dust2.png'))), self.code['dust']),
(Neuron(load(file_path(pack, 'dust3.png'))), self.code['dust']),
(Neuron(load(file_path(pack, 'water1.png'))), self.code['water']),
(Neuron(load(file_path(pack, 'water2.png'))), self.code['water']),
(Neuron(load(file_path(pack, 'water3.png'))), self.code['water']),
]
for x, output in train_data:
x.prepare()
self.net = buildNetwork(
4, 3, 3, hiddenclass=TanhLayer, outclass=SoftmaxLayer
)
data = SupervisedDataSet(4, 3)
for x, output in train_data:
data.addSample(
(
x.contours / 100.0, x.color[0] / 1000.0,
x.color[1] / 1000.0, x.color[2] / 1000.0,
),
output
)
trainer = BackpropTrainer(
self.net, momentum=0.1, verbose=True, weightdecay=0.01
)
trainer.trainOnDataset(data, 1000) # 1000 iterations
trainer.testOnData(verbose=True)
示例9: train
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import testOnData [as 别名]
def train(self, train_data_set, test_data_set, epoch=100):
trainer = BackpropTrainer(self.network, train_data_set)
progress_bar = ProgressBar(epoch)
for i in range(epoch):
progress_bar.update(i+1)
time.sleep(0.01)
trainer.train()
return trainer.testOnData(test_data_set, verbose=True)
示例10: train
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import testOnData [as 别名]
def train():
f = open('train_tower.csv', 'r')
csvreader = csv.reader(f)
dataset = SupervisedDataSet(64, 2)
for d in csvreader:
if d[64] == '0':
dataset.addSample(d[0:64], [1, 0])
else:
dataset.addSample(d[0:64], [0, 1])
network = buildNetwork(64, 19, 2)
trainer = BackpropTrainer(network, dataset)
for i in range(100):
trainer.train()
trainer.testOnData(dataset, verbose=True)
NetworkWriter.writeToFile(network, "tower.xml")
f.close()
示例11: testTraining
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import testOnData [as 别名]
def testTraining():
d = SequentialXORDataSet()
n = buildNetwork(d.indim, 4, d.outdim, recurrent=True)
t = BackpropTrainer(n, learningrate=0.01, momentum=0.99, verbose=True)
t.trainOnDataset(d, 1000)
t.testOnData(verbose=True)
示例12: SequentialDataSet
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import testOnData [as 别名]
import csv
from numpy import *
from pybrain.datasets import SequentialDataSet,UnsupervisedDataSet
from pybrain.tools.shortcuts import buildNetwork
from pybrain.supervised import BackpropTrainer
sequencia = []
NEURONIOS = 10e4
if __name__ == "__main__":
sequencias = SequentialDataSet(1,1)
for x in range(0,100):
sequencia.append(x)
for i,v in enumerate(sequencia):
if i+1 < len(sequencia):
sequencias.addSample(v, sequencia[i+1])
print(sequencias)
rn = buildNetwork(sequencias.indim, NEURONIOS, sequencias.outdim, recurrent=True)
sorteio = BackpropTrainer(rn, sequencias, learningrate=1/(NEURONIOS/100))
while 1:
try:
print(sorteio.train())
except KeyboardInterrupt:
sorteio.testOnData(verbose=True)
break
示例13: SupervisedDataSet
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import testOnData [as 别名]
((0.3, 1.0), 1.0),
((1.0, 0.6), 0.0),
((0.7, 0.6), 0.0),
((0.7, 0.1), 1.0),
)
testData = (
((0.8, 0.0), 1.0),
((0.9, 0.7), 0.0),
((0.1, 0.1), 0.0),
((0.2, 0.8), 1.0),
((0.6, 0.6), 0.0),
((0.6, 1.0), 0.0),
((1.0, 0.3), 1.0),
((0.1, 0.1), 0.0),
)
datasetForTraining = SupervisedDataSet(ENTRY_DIMENSION, RESULT_DIMENSION)
for entry, expectedResult in trainingData:
datasetForTraining.addSample(entry, [expectedResult])
datasetForTest = SupervisedDataSet(ENTRY_DIMENSION, RESULT_DIMENSION)
for entry, expectedResult in testData:
datasetForTest.addSample(entry, [expectedResult])
HIDDEN_LAYER_DIMENSION = 4
network = buildNetwork(ENTRY_DIMENSION, HIDDEN_LAYER_DIMENSION, RESULT_DIMENSION, recurrent=True)
trainer = BackpropTrainer(network, learningrate=0.01, momentum=0.99, verbose=True)
trainer.trainOnDataset(datasetForTraining, 1)
trainer.testOnData(datasetForTest, verbose=True)
示例14: tuple
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import testOnData [as 别名]
# third feature is unemployment
une.append(data[2])
fund.append(data[3])
indata = tuple(data[:features])
outdata = tuple(data[features:])
ds.addSample(indata,outdata)
# this builds a network that has the number of features as input,
# a *SINGLE* defined hidden layer and a single output neuron.
n = buildNetwork(ds.indim,hidden,hidden,ds.outdim)
t = BackpropTrainer(n,learningrate=0.01,momentum=0.8,verbose=True)
t.trainOnDataset(ds,steps)
t.testOnData(verbose=True)
# let's plot what we have
import matplotlib.pyplot as plt
# lets ask for a prediction: GDP,CPI, Unemployment
#print n.activate([.02,.02,-.002])
x = []
y = []
#print range(len(time))
for i in range(len(time)):
#print n.activate([gdp(i),cpi(i),une(i)])
x.append(.25*time[i]+1954.5)
y.append(n.activate([gdp[i],cpi[i],une[i]]))
示例15: buildNetwork
# 需要导入模块: from pybrain.supervised import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.BackpropTrainer import testOnData [as 别名]
rnn = buildNetwork(trndata.indim, hidden, trndata.outdim, hiddenclass=LSTMLayer, outclass=SigmoidLayer, recurrent=True)
#rnn.randomize()
#trainer = BackpropTrainer(rnn, dataset)
#for _ in range(100):
# print trainer.train()
# define a training method
#trainer = RPropMinusTrainer( rnn, dataset=trndata, verbose=True )
# instead, you may also try
trainer = BackpropTrainer( rnn, dataset=trndata, verbose=True)
#carry out the training
for i in xrange(1000):
#trainer.trainEpochs( 2)
#trainer.trainOnDataset(trndata)
#trnresult = 100. * (1.0-testOnSequenceData(rnn, trndata))
#print trnresult
#tstresult = 100. * (1.0-testOnSequenceData(rnn, tstdata))
#print "train error: %5.2f%%" % trnresult, ", test error: %5.2f%%" % tstresult
trainer.train()
#print "train error: %5.2f%%" % trnresult
# just for reference, plot the first 5 timeseries
trainer.testOnData(tstdata, verbose= True)
#plot(trndata['input'][0:50,:],'-o')
#old(True)
#plot(trndata['target'][0:50,:],'-o')
#show()