当前位置: 首页>>代码示例>>Python>>正文


Python Raw.info['bads']方法代码示例

本文整理汇总了Python中mne.fiff.Raw.info['bads']方法的典型用法代码示例。如果您正苦于以下问题:Python Raw.info['bads']方法的具体用法?Python Raw.info['bads']怎么用?Python Raw.info['bads']使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mne.fiff.Raw的用法示例。


在下文中一共展示了Raw.info['bads']方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _get_data

# 需要导入模块: from mne.fiff import Raw [as 别名]
# 或者: from mne.fiff.Raw import info['bads'] [as 别名]
def _get_data():
    # Read raw data
    raw = Raw(raw_fname)
    raw.info['bads'] = ['MEG 2443', 'EEG 053']  # 2 bads channels

    # Set picks
    picks = mne.fiff.pick_types(raw.info, meg=True, eeg=False, eog=False,
                                stim=False, exclude='bads')

    # Read several epochs
    event_id, tmin, tmax = 1, -0.2, 0.5
    events = mne.read_events(event_fname)[0:100]
    epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
                        picks=picks, baseline=(None, 0), preload=True,
                        reject=dict(grad=4000e-13, mag=4e-12))

    # Create an epochs object with one epoch and one channel of artificial data
    event_id, tmin, tmax = 1, 0.0, 1.0
    epochs_sin = mne.Epochs(raw, events[0:5], event_id, tmin, tmax, proj=True,
                            picks=[0], baseline=(None, 0), preload=True,
                            reject=dict(grad=4000e-13))
    freq = 10
    epochs_sin._data = np.sin(2 * np.pi * freq
                              * epochs_sin.times)[None, None, :]
    return epochs, epochs_sin
开发者ID:TalLinzen,项目名称:mne-python,代码行数:27,代码来源:test_csd.py

示例2: test_load_bad_channels

# 需要导入模块: from mne.fiff import Raw [as 别名]
# 或者: from mne.fiff.Raw import info['bads'] [as 别名]
def test_load_bad_channels():
    """Test reading/writing of bad channels
    """
    # Load correctly marked file (manually done in mne_process_raw)
    raw_marked = Raw(fif_bad_marked_fname)
    correct_bads = raw_marked.info['bads']
    raw = Raw(fif_fname)
    # Make sure it starts clean
    assert_array_equal(raw.info['bads'], [])

    # Test normal case
    raw.load_bad_channels(bad_file_works)
    # Write it out, read it in, and check
    raw.save(op.join(tempdir, 'foo_raw.fif'))
    raw_new = Raw(op.join(tempdir, 'foo_raw.fif'))
    assert_equal(correct_bads, raw_new.info['bads'])
    # Reset it
    raw.info['bads'] = []

    # Test bad case
    assert_raises(ValueError, raw.load_bad_channels, bad_file_wrong)

    # Test forcing the bad case
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        raw.load_bad_channels(bad_file_wrong, force=True)
        n_found = sum(['1 bad channel' in str(ww.message) for ww in w])
        assert_equal(n_found, 1)  # there could be other irrelevant errors
        # write it out, read it in, and check
        raw.save(op.join(tempdir, 'foo_raw.fif'), overwrite=True)
        raw_new = Raw(op.join(tempdir, 'foo_raw.fif'))
        assert_equal(correct_bads, raw_new.info['bads'])

    # Check that bad channels are cleared
    raw.load_bad_channels(None)
    raw.save(op.join(tempdir, 'foo_raw.fif'), overwrite=True)
    raw_new = Raw(op.join(tempdir, 'foo_raw.fif'))
    assert_equal([], raw_new.info['bads'])
开发者ID:TalLinzen,项目名称:mne-python,代码行数:40,代码来源:test_raw.py

示例3: test_load_bad_channels

# 需要导入模块: from mne.fiff import Raw [as 别名]
# 或者: from mne.fiff.Raw import info['bads'] [as 别名]
def test_load_bad_channels():
    """Test reading/writing of bad channels
    """

    # Load correctly marked file (manually done in mne_process_raw)
    raw_marked = Raw(fif_bad_marked_fname)
    correct_bads = raw_marked.info['bads']
    raw = Raw(fif_fname)
    # Make sure it starts clean
    assert_array_equal(raw.info['bads'], [])

    # Test normal case
    raw.load_bad_channels(bad_file_works)
    # Write it out, read it in, and check
    raw.save(op.join(tempdir, 'foo_raw.fif'))
    raw_new = Raw(op.join(tempdir, 'foo_raw.fif'))
    assert_equal(correct_bads, raw_new.info['bads'])
    # Reset it
    raw.info['bads'] = []

    # Test bad case
    assert_raises(ValueError, raw.load_bad_channels, bad_file_wrong)

    # Test forcing the bad case
    with warnings.catch_warnings(record=True) as w:
        raw.load_bad_channels(bad_file_wrong, force=True)
        assert_equal(len(w), 1)
        # write it out, read it in, and check
        raw.save(op.join(tempdir, 'foo_raw.fif'))
        raw_new = Raw(op.join(tempdir, 'foo_raw.fif'))
        assert_equal(correct_bads, raw_new.info['bads'])

    # Check that bad channels are cleared
    raw.load_bad_channels(None)
    raw.save(op.join(tempdir, 'foo_raw.fif'))
    raw_new = Raw(op.join(tempdir, 'foo_raw.fif'))
    assert_equal([], raw_new.info['bads'])
开发者ID:mshamalainen,项目名称:mne-python,代码行数:39,代码来源:test_raw.py

示例4: Raw

# 需要导入模块: from mne.fiff import Raw [as 别名]
# 或者: from mne.fiff.Raw import info['bads'] [as 别名]
data_path = sample.data_path('..')
raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_raw-eve.fif'
fname_fwd = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif'
fname_cov = data_path + '/MEG/sample/sample_audvis-cov.fif'
label_name = 'Aud-lh'
fname_label = data_path + '/MEG/sample/labels/%s.label' % label_name

###############################################################################
# Get epochs
event_id, tmin, tmax = 1, -0.2, 0.5

# Setup for reading the raw data
raw = Raw(raw_fname)
raw.info['bads'] = ['MEG 2443', 'EEG 053']  # 2 bads channels
events = mne.read_events(event_fname)

# Set up pick list: EEG + MEG - bad channels (modify to your needs)
left_temporal_channels = mne.read_selection('Left-temporal')
picks = pick_types(raw.info, meg=True, eeg=False, stim=True, eog=True,
                   exclude=raw.info['bads'], selection=left_temporal_channels)

# Read epochs
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
                    picks=picks, baseline=(None, 0), preload=True,
                    reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6))
evoked = epochs.average()

forward = mne.read_forward_solution(fname_fwd)
开发者ID:baca790,项目名称:mne-python,代码行数:31,代码来源:plot_lcmv_beamformer.py

示例5: Raw

# 需要导入模块: from mne.fiff import Raw [as 别名]
# 或者: from mne.fiff.Raw import info['bads'] [as 别名]
from mne import read_proj, read_forward_solution, read_cov, read_label
from mne.fiff.pick import pick_types_evoked, pick_types_forward
from mne.fiff import read_evokeds, Raw, pick_types
from mne.datasets import sample
from mne.time_frequency import iir_filter_raw, morlet
from mne.viz import plot_evoked, plot_sparse_source_estimates
from mne.simulation import generate_sparse_stc, generate_evoked

###############################################################################
# Load real data as templates
data_path = sample.data_path()

raw = Raw(data_path + '/MEG/sample/sample_audvis_raw.fif')
proj = read_proj(data_path + '/MEG/sample/sample_audvis_ecg_proj.fif')
raw.info['projs'] += proj
raw.info['bads'] = ['MEG 2443', 'EEG 053']  # mark bad channels

fwd_fname = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif'
ave_fname = data_path + '/MEG/sample/sample_audvis-no-filter-ave.fif'
cov_fname = data_path + '/MEG/sample/sample_audvis-cov.fif'

fwd = read_forward_solution(fwd_fname, force_fixed=True, surf_ori=True)
fwd = pick_types_forward(fwd, meg=True, eeg=True, exclude=raw.info['bads'])

cov = read_cov(cov_fname)

condition = 'Left Auditory'
evoked_template = read_evokeds(ave_fname, condition=condition, baseline=None)
evoked_template = pick_types_evoked(evoked_template, meg=True, eeg=True,
                                    exclude=raw.info['bads'])
开发者ID:beamandrew,项目名称:mne-python,代码行数:32,代码来源:plot_simulate_evoked_data.py

示例6: Raw

# 需要导入模块: from mne.fiff import Raw [as 别名]
# 或者: from mne.fiff.Raw import info['bads'] [as 别名]
from mne.fiff import Raw
from mne.datasets import sample
from mne.time_frequency import compute_epochs_csd
from mne.beamformer import dics_source_power

data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_raw-eve.fif'
fname_fwd = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif'
subjects_dir = data_path + '/subjects'

###############################################################################
# Read raw data
raw = Raw(raw_fname)
raw.info['bads'] = ['MEG 2443']  # 1 bad MEG channel

# Set picks
picks = mne.fiff.pick_types(raw.info, meg=True, eeg=False, eog=False,
                            stim=False, exclude='bads')

# Read epochs
event_id, tmin, tmax = 1, -0.2, 0.5
events = mne.read_events(event_fname)
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
                    picks=picks, baseline=(None, 0), preload=True,
                    reject=dict(grad=4000e-13, mag=4e-12))
evoked = epochs.average()

# Read forward operator
forward = mne.read_forward_solution(fname_fwd, surf_ori=True)
开发者ID:TalLinzen,项目名称:mne-python,代码行数:32,代码来源:plot_dics_source_power.py

示例7: Raw

# 需要导入模块: from mne.fiff import Raw [as 别名]
# 或者: from mne.fiff.Raw import info['bads'] [as 别名]
from mne.beamformer import tf_dics
from mne.viz import plot_source_spectrogram

data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif'
noise_fname = data_path + '/MEG/sample/ernoise_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_raw-eve.fif'
fname_fwd = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif'
subjects_dir = data_path + '/subjects'
label_name = 'Aud-lh'
fname_label = data_path + '/MEG/sample/labels/%s.label' % label_name

###############################################################################
# Read raw data
raw = Raw(raw_fname)
raw.info['bads'] = ['MEG 2443']  # 1 bad MEG channel

# Pick a selection of magnetometer channels. A subset of all channels was used
# to speed up the example. For a solution based on all MEG channels use
# meg=True, selection=None and add mag=4e-12 to the reject dictionary.
left_temporal_channels = mne.read_selection('Left-temporal')
picks = mne.fiff.pick_types(raw.info, meg='mag', eeg=False, eog=False,
                            stim=False, exclude='bads',
                            selection=left_temporal_channels)
reject = dict(mag=4e-12)

# Read epochs
event_id, epoch_tmin, epoch_tmax = 1, -0.3, 0.5
events = mne.read_events(event_fname)
epochs = mne.Epochs(raw, events, event_id, epoch_tmin, epoch_tmax, proj=True,
                    picks=picks, baseline=(None, 0), preload=True,
开发者ID:Anevar,项目名称:mne-python,代码行数:33,代码来源:plot_tf_dics.py

示例8: Raw

# 需要导入模块: from mne.fiff import Raw [as 别名]
# 或者: from mne.fiff.Raw import info['bads'] [as 别名]
import pylab as pl
import numpy as np
from mne.fiff import Raw
from mne.datasets import sample

from pandas.stats.api import rolling_mean

# turn on interactive mode
pl.ion()

data_path = sample.data_path('..')
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'

raw = Raw(raw_fname)
events = mne.find_events(raw, stim_channel='STI 014')
raw.info['bads'] = ['MEG 2443', 'EEG 053']
picks = mne.fiff.pick_types(raw.info, meg='grad', eeg=True, eog=True,
                            stim=False, exclude=raw.info['bads'])

tmin, tmax, event_id = -0.2, 0.5, 1
baseline = (None, 0)
reject = dict(grad=4000e-13, eog=150e-6)

epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks,
                    baseline=baseline, preload=False, reject=reject)

epochs_df = epochs.as_data_frame()

meg_chs = [c for c in epochs.ch_names if c.startswith("MEG")]

# display some channels.
开发者ID:starzynski,项目名称:mne-python,代码行数:33,代码来源:plot_epochs_as_data_frame.py


注:本文中的mne.fiff.Raw.info['bads']方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。