当前位置: 首页>>代码示例>>Python>>正文


Python Raw.crop方法代码示例

本文整理汇总了Python中mne.fiff.Raw.crop方法的典型用法代码示例。如果您正苦于以下问题:Python Raw.crop方法的具体用法?Python Raw.crop怎么用?Python Raw.crop使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mne.fiff.Raw的用法示例。


在下文中一共展示了Raw.crop方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_subject_info

# 需要导入模块: from mne.fiff import Raw [as 别名]
# 或者: from mne.fiff.Raw import crop [as 别名]
def test_subject_info():
    """Test reading subject information
    """
    raw = Raw(fif_fname)
    raw.crop(0, 1)
    assert_true(raw.info['subject_info'] is None)
    # fake some subject data
    keys = ['id', 'his_id', 'last_name', 'first_name', 'birthday', 'sex',
            'hand']
    vals = [1, 'foobar', 'bar', 'foo', (1901, 2, 3), 0, 1]
    subject_info = dict()
    for key, val in zip(keys, vals):
        subject_info[key] = val
    raw.info['subject_info'] = subject_info
    out_fname = op.join(tempdir, 'test_subj_info_raw.fif')
    raw.save(out_fname, overwrite=True)
    raw_read = Raw(out_fname)
    for key in keys:
        assert_equal(subject_info[key], raw_read.info['subject_info'][key])
    raw_read.anonymize()
    assert_true(raw_read.info.get('subject_info') is None)
    out_fname_anon = op.join(tempdir, 'test_subj_info_anon_raw.fif')
    raw_read.save(out_fname_anon, overwrite=True)
    raw_read = Raw(out_fname_anon)
    assert_true(raw_read.info.get('subject_info') is None)
开发者ID:Anevar,项目名称:mne-python,代码行数:27,代码来源:test_raw.py

示例2: test_cov_estimation_on_raw_segment

# 需要导入模块: from mne.fiff import Raw [as 别名]
# 或者: from mne.fiff.Raw import crop [as 别名]
def test_cov_estimation_on_raw_segment():
    """Test estimation from raw on continuous recordings (typically empty room)
    """
    raw = Raw(raw_fname, preload=False)
    cov = compute_raw_data_covariance(raw)
    cov_mne = read_cov(erm_cov_fname)
    assert_true(cov_mne.ch_names == cov.ch_names)
    assert_true(linalg.norm(cov.data - cov_mne.data, ord='fro')
                / linalg.norm(cov.data, ord='fro') < 1e-4)

    # test IO when computation done in Python
    cov.save(op.join(tempdir, 'test-cov.fif'))  # test saving
    cov_read = read_cov(op.join(tempdir, 'test-cov.fif'))
    assert_true(cov_read.ch_names == cov.ch_names)
    assert_true(cov_read.nfree == cov.nfree)
    assert_array_almost_equal(cov.data, cov_read.data)

    # test with a subset of channels
    picks = pick_channels(raw.ch_names, include=raw.ch_names[:5])
    cov = compute_raw_data_covariance(raw, picks=picks)
    assert_true(cov_mne.ch_names[:5] == cov.ch_names)
    assert_true(linalg.norm(cov.data - cov_mne.data[picks][:, picks],
                ord='fro') / linalg.norm(cov.data, ord='fro') < 1e-4)
    # make sure we get a warning with too short a segment
    raw_2 = raw.crop(0, 1)
    with warnings.catch_warnings(record=True) as w:
        cov = compute_raw_data_covariance(raw_2)
        assert_true(len(w) == 1)
开发者ID:emanuele,项目名称:mne-python,代码行数:30,代码来源:test_cov.py

示例3: test_output_formats

# 需要导入模块: from mne.fiff import Raw [as 别名]
# 或者: from mne.fiff.Raw import crop [as 别名]
def test_output_formats():
    """Test saving and loading raw data using multiple formats
    """
    formats = ['short', 'int', 'single', 'double']
    tols = [1e-4, 1e-7, 1e-7, 1e-15]

    # let's fake a raw file with different formats
    raw = Raw(fif_fname, preload=True)
    raw.crop(0, 1, copy=False)

    temp_file = op.join(tempdir, 'raw.fif')
    for ii, (format, tol) in enumerate(zip(formats, tols)):
        # Let's test the overwriting error throwing while we're at it
        if ii > 0:
            assert_raises(IOError, raw.save, temp_file, format=format)
        raw.save(temp_file, format=format, overwrite=True)
        raw2 = Raw(temp_file)
        raw2_data = raw2[:, :][0]
        assert_allclose(raw2_data, raw._data, rtol=tol, atol=1e-25)
        assert_true(raw2.orig_format == format)
开发者ID:TalLinzen,项目名称:mne-python,代码行数:22,代码来源:test_raw.py

示例4: test_crop

# 需要导入模块: from mne.fiff import Raw [as 别名]
# 或者: from mne.fiff.Raw import crop [as 别名]
def test_crop():
    """Test cropping raw files
    """
    # split a concatenated file to test a difficult case
    raw = Raw([fif_fname, fif_fname], preload=True)
    split_size = 10.  # in seconds
    sfreq = raw.info['sfreq']
    nsamp = (raw.last_samp - raw.first_samp + 1)

    # do an annoying case (off-by-one splitting)
    tmins = np.r_[1., np.round(np.arange(0., nsamp - 1, split_size * sfreq))]
    tmins = np.sort(tmins)
    tmaxs = np.concatenate((tmins[1:] - 1, [nsamp - 1]))
    tmaxs /= sfreq
    tmins /= sfreq
    raws = [None] * len(tmins)
    for ri, (tmin, tmax) in enumerate(zip(tmins, tmaxs)):
        raws[ri] = raw.crop(tmin, tmax, True)
    all_raw_2 = concatenate_raws(raws, preload=True)
    assert_true(raw.first_samp == all_raw_2.first_samp)
    assert_true(raw.last_samp == all_raw_2.last_samp)
    assert_array_equal(raw[:, :][0], all_raw_2[:, :][0])

    tmins = np.round(np.arange(0., nsamp - 1, split_size * sfreq))
    tmaxs = np.concatenate((tmins[1:] - 1, [nsamp - 1]))
    tmaxs /= sfreq
    tmins /= sfreq

    # going in revere order so the last fname is the first file (need it later)
    raws = [None] * len(tmins)
    for ri, (tmin, tmax) in enumerate(zip(tmins, tmaxs)):
        raws[ri] = raw.copy()
        raws[ri].crop(tmin, tmax, False)
    # test concatenation of split file
    all_raw_1 = concatenate_raws(raws, preload=True)

    all_raw_2 = raw.crop(0, None, True)
    for ar in [all_raw_1, all_raw_2]:
        assert_true(raw.first_samp == ar.first_samp)
        assert_true(raw.last_samp == ar.last_samp)
        assert_array_equal(raw[:, :][0], ar[:, :][0])
开发者ID:mshamalainen,项目名称:mne-python,代码行数:43,代码来源:test_raw.py

示例5: test_io_raw

# 需要导入模块: from mne.fiff import Raw [as 别名]
# 或者: from mne.fiff.Raw import crop [as 别名]
def test_io_raw():
    """Test IO for raw data (Neuromag + CTF + gz)
    """
    # Let's construct a simple test for IO first
    raw = Raw(fif_fname, preload=True)
    raw.crop(0, 3.5)
    # put in some data that we know the values of
    data = np.random.randn(raw._data.shape[0], raw._data.shape[1])
    raw._data[:, :] = data
    # save it somewhere
    fname = op.join(tempdir, 'test_copy_raw.fif')
    raw.save(fname, buffer_size_sec=1.0)
    # read it in, make sure the whole thing matches
    raw = Raw(fname)
    assert_true(np.allclose(data, raw[:, :][0], 1e-6, 1e-20))
    # let's read portions across the 1-sec tag boundary, too
    inds = raw.time_as_index([1.75, 2.25])
    sl = slice(inds[0], inds[1])
    assert_true(np.allclose(data[:, sl], raw[:, sl][0], 1e-6, 1e-20))

    # now let's do some real I/O
    fnames_in = [fif_fname, fif_gz_fname, ctf_fname]
    fnames_out = ['raw.fif', 'raw.fif.gz', 'raw.fif']
    for fname_in, fname_out in zip(fnames_in, fnames_out):
        fname_out = op.join(tempdir, fname_out)
        raw = Raw(fname_in)

        nchan = raw.info['nchan']
        ch_names = raw.info['ch_names']
        meg_channels_idx = [k for k in range(nchan)
                            if ch_names[k][0] == 'M']
        n_channels = 100
        meg_channels_idx = meg_channels_idx[:n_channels]
        start, stop = raw.time_as_index([0, 5])
        data, times = raw[meg_channels_idx, start:(stop + 1)]
        meg_ch_names = [ch_names[k] for k in meg_channels_idx]

        # Set up pick list: MEG + STI 014 - bad channels
        include = ['STI 014']
        include += meg_ch_names
        picks = pick_types(raw.info, meg=True, eeg=False, stim=True,
                           misc=True, ref_meg=True, include=include,
                           exclude='bads')

        # Writing with drop_small_buffer True
        raw.save(fname_out, picks, tmin=0, tmax=4, buffer_size_sec=3,
                 drop_small_buffer=True, overwrite=True)
        raw2 = Raw(fname_out, preload=True)

        sel = pick_channels(raw2.ch_names, meg_ch_names)
        data2, times2 = raw2[sel, :]
        assert_true(times2.max() <= 3)

        # Writing
        raw.save(fname_out, picks, tmin=0, tmax=5, overwrite=True)

        if fname_in == fif_fname or fname_in == fif_fname + '.gz':
            assert_true(len(raw.info['dig']) == 146)

        raw2 = Raw(fname_out)

        sel = pick_channels(raw2.ch_names, meg_ch_names)
        data2, times2 = raw2[sel, :]

        assert_true(np.allclose(data, data2, 1e-6, 1e-20))
        assert_allclose(times, times2)
        assert_allclose(raw.info['sfreq'], raw2.info['sfreq'], rtol=1e-5)

        # check transformations
        for trans in ['dev_head_t', 'dev_ctf_t', 'ctf_head_t']:
            if raw.info[trans] is None:
                assert_true(raw2.info[trans] is None)
            else:
                assert_array_equal(raw.info[trans]['trans'],
                                   raw2.info[trans]['trans'])

                # check transformation 'from' and 'to'
                if trans.startswith('dev'):
                    from_id = FIFF.FIFFV_COORD_DEVICE
                else:
                    from_id = FIFF.FIFFV_MNE_COORD_CTF_HEAD
                if trans[4:8] == 'head':
                    to_id = FIFF.FIFFV_COORD_HEAD
                else:
                    to_id = FIFF.FIFFV_MNE_COORD_CTF_HEAD
                for raw_ in [raw, raw2]:
                    assert_true(raw_.info[trans]['from'] == from_id)
                    assert_true(raw_.info[trans]['to'] == to_id)

        if fname_in == fif_fname or fname_in == fif_fname + '.gz':
            assert_allclose(raw.info['dig'][0]['r'], raw2.info['dig'][0]['r'])
开发者ID:TalLinzen,项目名称:mne-python,代码行数:93,代码来源:test_raw.py


注:本文中的mne.fiff.Raw.crop方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。