本文整理汇总了Python中mne.fiff.Raw类的典型用法代码示例。如果您正苦于以下问题:Python Raw类的具体用法?Python Raw怎么用?Python Raw使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Raw类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _get_data
def _get_data():
# Read raw data
raw = Raw(raw_fname)
raw.info['bads'] = ['MEG 2443', 'EEG 053'] # 2 bads channels
# Set picks
picks = mne.fiff.pick_types(raw.info, meg=True, eeg=False, eog=False,
stim=False, exclude='bads')
# Read several epochs
event_id, tmin, tmax = 1, -0.2, 0.5
events = mne.read_events(event_fname)[0:100]
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
picks=picks, baseline=(None, 0), preload=True,
reject=dict(grad=4000e-13, mag=4e-12))
# Create an epochs object with one epoch and one channel of artificial data
event_id, tmin, tmax = 1, 0.0, 1.0
epochs_sin = mne.Epochs(raw, events[0:5], event_id, tmin, tmax, proj=True,
picks=[0], baseline=(None, 0), preload=True,
reject=dict(grad=4000e-13))
freq = 10
epochs_sin._data = np.sin(2 * np.pi * freq
* epochs_sin.times)[None, None, :]
return epochs, epochs_sin
示例2: test_raw_index_as_time
def test_raw_index_as_time():
""" Test index as time conversion"""
raw = Raw(fif_fname, preload=True)
t0 = raw.index_as_time([0], True)[0]
t1 = raw.index_as_time([100], False)[0]
t2 = raw.index_as_time([100], True)[0]
assert_true((t2 - t1) == t0)
示例3: test_cov_estimation_on_raw_segment
def test_cov_estimation_on_raw_segment():
"""Test estimation from raw on continuous recordings (typically empty room)
"""
raw = Raw(raw_fname, preload=False)
cov = compute_raw_data_covariance(raw)
cov_mne = read_cov(erm_cov_fname)
assert_true(cov_mne.ch_names == cov.ch_names)
assert_true(linalg.norm(cov.data - cov_mne.data, ord='fro')
/ linalg.norm(cov.data, ord='fro') < 1e-4)
# test IO when computation done in Python
cov.save(op.join(tempdir, 'test-cov.fif')) # test saving
cov_read = read_cov(op.join(tempdir, 'test-cov.fif'))
assert_true(cov_read.ch_names == cov.ch_names)
assert_true(cov_read.nfree == cov.nfree)
assert_array_almost_equal(cov.data, cov_read.data)
# test with a subset of channels
picks = pick_channels(raw.ch_names, include=raw.ch_names[:5])
cov = compute_raw_data_covariance(raw, picks=picks)
assert_true(cov_mne.ch_names[:5] == cov.ch_names)
assert_true(linalg.norm(cov.data - cov_mne.data[picks][:, picks],
ord='fro') / linalg.norm(cov.data, ord='fro') < 1e-4)
# make sure we get a warning with too short a segment
raw_2 = raw.crop(0, 1)
with warnings.catch_warnings(record=True) as w:
cov = compute_raw_data_covariance(raw_2)
assert_true(len(w) == 1)
示例4: test_io_complex
def test_io_complex():
"""Test IO with complex data types
"""
dtypes = [np.complex64, np.complex128]
raw = Raw(fif_fname, preload=True)
picks = np.arange(5)
start, stop = raw.time_as_index([0, 5])
data_orig, _ = raw[picks, start:stop]
for di, dtype in enumerate(dtypes):
imag_rand = np.array(1j * np.random.randn(data_orig.shape[0],
data_orig.shape[1]), dtype)
raw_cp = raw.copy()
raw_cp._data = np.array(raw_cp._data, dtype)
raw_cp._data[picks, start:stop] += imag_rand
# this should throw an error because it's complex
with warnings.catch_warnings(record=True) as w:
raw_cp.save(op.join(tempdir, 'raw.fif'), picks, tmin=0, tmax=5)
# warning only gets thrown on first instance
assert_equal(len(w), 1 if di == 0 else 0)
raw2 = Raw(op.join(tempdir, 'raw.fif'))
raw2_data, _ = raw2[picks, :]
n_samp = raw2_data.shape[1]
assert_array_almost_equal(raw2_data[:, :n_samp],
raw_cp._data[picks, :n_samp])
# with preloading
raw2 = Raw(op.join(tempdir, 'raw.fif'), preload=True)
raw2_data, _ = raw2[picks, :]
n_samp = raw2_data.shape[1]
assert_array_almost_equal(raw2_data[:, :n_samp],
raw_cp._data[picks, :n_samp])
示例5: test_preload_modify
def test_preload_modify():
""" Test preloading and modifying data
"""
for preload in [False, True, 'memmap.dat']:
raw = Raw(fif_fname, preload=preload)
nsamp = raw.last_samp - raw.first_samp + 1
picks = pick_types(raw.info, meg='grad', exclude='bads')
data = np.random.randn(len(picks), nsamp / 2)
try:
raw[picks, :nsamp / 2] = data
except RuntimeError as err:
if not preload:
continue
else:
raise err
tmp_fname = op.join(tempdir, 'raw.fif')
raw.save(tmp_fname)
raw_new = Raw(tmp_fname)
data_new, _ = raw_new[picks, :nsamp / 2]
assert_array_almost_equal(data, data_new)
示例6: test_preload_modify
def test_preload_modify():
""" Test preloading and modifying data
"""
for preload in [False, True, "memmap.dat"]:
raw = Raw(fif_fname, preload=preload)
nsamp = raw.last_samp - raw.first_samp + 1
picks = pick_types(raw.info, meg="grad", exclude="bads")
data = np.random.randn(len(picks), nsamp / 2)
try:
raw[picks, : nsamp / 2] = data
except RuntimeError as err:
if not preload:
continue
else:
raise err
tmp_fname = op.join(tempdir, "raw.fif")
raw.save(tmp_fname, overwrite=True)
raw_new = Raw(tmp_fname)
data_new, _ = raw_new[picks, : nsamp / 2]
assert_allclose(data, data_new)
示例7: test_copy_append
def test_copy_append():
"""Test raw copying and appending combinations
"""
raw = Raw(fif_fname, preload=True).copy()
raw_full = Raw(fif_fname)
raw_full.append(raw)
data = raw_full[:, :][0]
assert_true(data.shape[1] == 2 * raw._data.shape[1])
示例8: test_drop_channels_mixin
def test_drop_channels_mixin():
"""Test channels-dropping functionality
"""
raw = Raw(fif_fname, preload=True)
drop_ch = raw.ch_names[:3]
ch_names = raw.ch_names[3:]
raw.drop_channels(drop_ch)
assert_equal(ch_names, raw.ch_names)
assert_equal(len(ch_names), raw._data.shape[0])
示例9: test_as_data_frame
def test_as_data_frame():
"""Test Pandas exporter"""
raw = Raw(fif_fname, preload=True)
df = raw.as_data_frame()
assert_true((df.columns == raw.ch_names).all())
df = raw.as_data_frame(use_time_index=False)
assert_true('time' in df.columns)
assert_array_equal(df.values[:, 1], raw._data[0] * 1e13)
assert_array_equal(df.values[:, 3], raw._data[2] * 1e15)
示例10: test_hilbert
def test_hilbert():
""" Test computation of analytic signal using hilbert """
raw = Raw(fif_fname, preload=True)
picks_meg = pick_types(raw.info, meg=True, exclude='bads')
picks = picks_meg[:4]
raw2 = raw.copy()
raw.apply_hilbert(picks)
raw2.apply_hilbert(picks, envelope=True, n_jobs=2)
env = np.abs(raw._data[picks, :])
assert_array_almost_equal(env, raw2._data[picks, :])
示例11: test_hilbert
def test_hilbert():
""" Test computation of analytic signal using hilbert """
raw = Raw(fif_fname, preload=True)
picks_meg = pick_types(raw.info, meg=True, exclude="bads")
picks = picks_meg[:4]
raw2 = raw.copy()
raw.apply_hilbert(picks)
raw2.apply_hilbert(picks, envelope=True, n_jobs=2)
env = np.abs(raw._data[picks, :])
assert_allclose(env, raw2._data[picks, :], rtol=1e-2, atol=1e-13)
示例12: test_equalize_channels
def test_equalize_channels():
"""Test equalization of channels
"""
raw1 = Raw(fif_fname)
raw2 = raw1.copy()
ch_names = raw1.ch_names[2:]
raw1.drop_channels(raw1.ch_names[:1])
raw2.drop_channels(raw2.ch_names[1:2])
my_comparison = [raw1, raw2]
equalize_channels(my_comparison)
for e in my_comparison:
assert_equal(ch_names, e.ch_names)
示例13: test_raw_to_nitime
def test_raw_to_nitime():
""" Test nitime export """
raw = Raw(fif_fname, preload=True)
picks_meg = pick_types(raw.info, meg=True, exclude='bads')
picks = picks_meg[:4]
raw_ts = raw.to_nitime(picks=picks)
assert_true(raw_ts.data.shape[0] == len(picks))
raw = Raw(fif_fname, preload=False)
picks_meg = pick_types(raw.info, meg=True, exclude='bads')
picks = picks_meg[:4]
raw_ts = raw.to_nitime(picks=picks)
assert_true(raw_ts.data.shape[0] == len(picks))
raw = Raw(fif_fname, preload=True)
picks_meg = pick_types(raw.info, meg=True, exclude='bads')
picks = picks_meg[:4]
raw_ts = raw.to_nitime(picks=picks, copy=False)
assert_true(raw_ts.data.shape[0] == len(picks))
raw = Raw(fif_fname, preload=False)
picks_meg = pick_types(raw.info, meg=True, exclude='bads')
picks = picks_meg[:4]
raw_ts = raw.to_nitime(picks=picks, copy=False)
assert_true(raw_ts.data.shape[0] == len(picks))
示例14: test_raw_copy
def test_raw_copy():
""" Test Raw copy"""
raw = Raw(fif_fname, preload=True)
data, _ = raw[:, :]
copied = raw.copy()
copied_data, _ = copied[:, :]
assert_array_equal(data, copied_data)
assert_equal(sorted(raw.__dict__.keys()), sorted(copied.__dict__.keys()))
raw = Raw(fif_fname, preload=False)
data, _ = raw[:, :]
copied = raw.copy()
copied_data, _ = copied[:, :]
assert_array_equal(data, copied_data)
assert_equal(sorted(raw.__dict__.keys()), sorted(copied.__dict__.keys()))
示例15: test_compute_proj_raw
def test_compute_proj_raw():
"""Test SSP computation on raw"""
# Test that the raw projectors work
raw_time = 2.5 # Do shorter amount for speed
raw = Raw(raw_fname, preload=True).crop(0, raw_time, False)
for ii in (0.25, 0.5, 1, 2):
with warnings.catch_warnings(True) as w:
projs = compute_proj_raw(raw, duration=ii - 0.1, stop=raw_time,
n_grad=1, n_mag=1, n_eeg=0)
assert_true(len(w) == 1)
# test that you can compute the projection matrix
projs = activate_proj(projs)
proj, nproj, U = make_projector(projs, raw.ch_names, bads=[])
assert_true(nproj == 2)
assert_true(U.shape[1] == 2)
# test that you can save them
raw.info['projs'] += projs
raw.save(op.join(tempdir, 'foo_%d_raw.fif' % ii))
# Test that purely continuous (no duration) raw projection works
with warnings.catch_warnings(True) as w:
projs = compute_proj_raw(raw, duration=None, stop=raw_time,
n_grad=1, n_mag=1, n_eeg=0)
assert_true(len(w) == 1)
# test that you can compute the projection matrix
projs = activate_proj(projs)
proj, nproj, U = make_projector(projs, raw.ch_names, bads=[])
assert_true(nproj == 2)
assert_true(U.shape[1] == 2)
# test that you can save them
raw.info['projs'] += projs
raw.save(op.join(tempdir, 'foo_rawproj_continuous_raw.fif'))
# test resampled-data projector, upsampling instead of downsampling
# here to save an extra filtering (raw would have to be LP'ed to be equiv)
raw_resamp = cp.deepcopy(raw)
raw_resamp.resample(raw.info['sfreq'] * 2, n_jobs=2)
projs = compute_proj_raw(raw_resamp, duration=None, stop=raw_time,
n_grad=1, n_mag=1, n_eeg=0)
projs = activate_proj(projs)
proj_new, _, _ = make_projector(projs, raw.ch_names, bads=[])
assert_array_almost_equal(proj_new, proj, 4)