当前位置: 首页>>代码示例>>Python>>正文


Python Layer._predict方法代码示例

本文整理汇总了Python中layer.Layer._predict方法的典型用法代码示例。如果您正苦于以下问题:Python Layer._predict方法的具体用法?Python Layer._predict怎么用?Python Layer._predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在layer.Layer的用法示例。


在下文中一共展示了Layer._predict方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from layer import Layer [as 别名]
# 或者: from layer.Layer import _predict [as 别名]
class LayerBuilder:

    def __init__(self, X, Y, num_nodes=50, num_iter=100, epsilon=0.01,
            test_size=0.3, boostCV_size=0.2, nodeCV_size=0.1, boost_decay=False,
            ultra_boosting=False, g_final=0.0000001, g_tol=0.01,
            threshold=-0.01, minibatch=False, validation=SHUFFLED,
            symmetric_labels=False, mode=REGRESSION, alpha=0.0):
        print "creating training, validation, and testing sets..."
        train_test = train_test_split(X, Y, test_size=test_size)
        X_nottest, X_test, Y_nottest, Y_test = train_test

        print 'fitting scalers...tranforming data...'
        if symmetric_labels:
            X_nottest, X_nottest_inds = FoldLabels(X_nottest)
            X_test, X_test_inds = FoldLabels(X_test)
        X_nottest, X_nottest_scaler = Preprocess(X_nottest)
        X_test, _ = Preprocess(X_test, Scaler=X_nottest_scaler)
        Y_nottest, Y_nottest_scaler = Preprocess(Y_nottest)

        (self.X_train,
        self.X_validate_layer,
        self.Y_train,
        self.Y_validate_layer) = train_test_split(X_nottest, Y_nottest, test_size=boostCV_size)

        if validation == UNIFORM:
            (self.X_train_node,
            self.X_validate_node,
            self.Y_train_node,
            self.Y_validate_node) = train_test_split(self.X_train, self.Y_train,
                                          test_size=nodeCV_size)
        elif validation == SHUFFLED:
            self.X_train_node = self.X_train
            self.X_validate_node = self.X_validate_layer
            self.Y_train_node = self.Y_train
            self.Y_validate_node = self.Y_validate_layer
        else:
            raise ValueError("What is this validation supposed to mean -.-'")

        self.init_layer(num_iter, alpha, epsilon, minibatch)
        self.build_layer(num_nodes, validation, nodeCV_size, num_iter, alpha, epsilon)

        pred_train = self.layer._predict(self.X_train)
        pred_validate = self.layer._predict(self.X_validate_layer)
        pred_test = self.layer._predict(X_test)

        # stack training+validation sets, inverse transform, separate again
        K = len(self.Y_train)
        x_train = numpy.vstack((self.X_train, self.X_validate_layer))
        y_train = numpy.hstack((self.Y_train, self.Y_validate_layer))

        x_train = Postprocess(x_train, X_nottest_scaler)
        y_train = Postprocess(y_train, Y_nottest_scaler)
        pred_train = Postprocess(pred_train, Y_nottest_scaler)
        pred_validate = Postprocess(pred_validate, Y_nottest_scaler)
        pred_test = Postprocess(pred_test, Y_nottest_scaler)

        self.X_train, self.X_validate_layer = [x_train[:K, :], x_train[K:, :]]
        self.Y_train, self.Y_validate_layer = [y_train[:K], y_train[K:]]

        self.layer.err_train = get_error(self.Y_train, pred_train)
        self.layer.err_validate = get_error(self.Y_validate_layer, pred_validate)
        self.layer.err_test = get_error(Y_test, pred_test)

        self.layer.X_scaler = X_nottest_scaler
        self.layer.Y_scaler = Y_nottest_scaler

        print self.layer.err_train, self.layer.err_validate, self.layer.err_test

    def init_layer(self, num_iter, alpha, epsilon, minibatch):
        """Initializes the layer and adds an initial node to it."""
        self.layer = Layer()

        node = OptimalNode(self.X_train_node, self.Y_train_node, bias=True,
                           num_iter=num_iter, alpha=alpha, minibatch=minibatch)
        node.early_stop(self.X_validate_node, self.Y_validate_node)
        node.lr = epsilon
        node.is_useful(self.layer, self.X_validate_node, self.Y_validate_node)

        self.layer.add_node(node)
        node.train_err = get_error(self.Y_train_node,
                    self.layer._predict(self.X_train_node))

    def build_layer(self, num_nodes, validation, nodeCV_size, num_iter, alpha, epsilon):
        """Builds a Layer by optimizing new nodes and adding them if they are useful.
        Each successive node optimizes w.r.t. residuals of the previous iteration.
        If the new node reduces error, the node is added to the layer. If it increases
        error, it stops (unless a certain number of consecutive bad nodes are allowed)."""

        for i in range(num_nodes):
            if validation=='Shuffled':
                train_validate = train_test_split(self.X_train, self.Y_train,
                                                  test_size=nodeCV_size)
                [self.X_train_node, self.X_validate_node,
                    self.Y_train_node, self.Y_validate_node] = train_validate

            Y_pseudo = self.Y_train_node-self.layer._predict(self.X_train_node)
            Y_pseudo_validate = self.Y_validate_node-self.layer._predict(self.X_validate_node)

            node = OptimalNode(self.X_train_node, Y_pseudo, bias=True,
                               num_iter=num_iter, alpha=alpha)
#.........这里部分代码省略.........
开发者ID:jcreus,项目名称:NNBuilder,代码行数:103,代码来源:builder.py


注:本文中的layer.Layer._predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。