本文整理汇总了Python中imblearn.pipeline.Pipeline.predict_proba方法的典型用法代码示例。如果您正苦于以下问题:Python Pipeline.predict_proba方法的具体用法?Python Pipeline.predict_proba怎么用?Python Pipeline.predict_proba使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类imblearn.pipeline.Pipeline
的用法示例。
在下文中一共展示了Pipeline.predict_proba方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_pipeline_methods_pca_svm
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import predict_proba [as 别名]
def test_pipeline_methods_pca_svm():
# Test the various methods of the pipeline (pca + svm).
iris = load_iris()
X = iris.data
y = iris.target
# Test with PCA + SVC
clf = SVC(probability=True, random_state=0)
pca = PCA()
pipe = Pipeline([('pca', pca), ('svc', clf)])
pipe.fit(X, y)
pipe.predict(X)
pipe.predict_proba(X)
pipe.predict_log_proba(X)
pipe.score(X, y)
示例2: test_pipeline_methods_anova
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import predict_proba [as 别名]
def test_pipeline_methods_anova():
# Test the various methods of the pipeline (anova).
iris = load_iris()
X = iris.data
y = iris.target
# Test with Anova + LogisticRegression
clf = LogisticRegression()
filter1 = SelectKBest(f_classif, k=2)
pipe = Pipeline([('anova', filter1), ('logistic', clf)])
pipe.fit(X, y)
pipe.predict(X)
pipe.predict_proba(X)
pipe.predict_log_proba(X)
pipe.score(X, y)
示例3: test_pipeline_methods_pca_svm
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import predict_proba [as 别名]
def test_pipeline_methods_pca_svm():
# Test the various methods of the pipeline (pca + svm).
iris = load_iris()
X = iris.data
y = iris.target
# Test with PCA + SVC
clf = SVC(gamma='scale', probability=True, random_state=0)
pca = PCA(svd_solver='full', n_components='mle', whiten=True)
pipe = Pipeline([('pca', pca), ('svc', clf)])
pipe.fit(X, y)
pipe.predict(X)
pipe.predict_proba(X)
pipe.predict_log_proba(X)
pipe.score(X, y)
示例4: test_pipeline_methods_anova_rus
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import predict_proba [as 别名]
def test_pipeline_methods_anova_rus():
# Test the various methods of the pipeline (anova).
X, y = make_classification(n_classes=2, class_sep=2, weights=[0.1, 0.9],
n_informative=3, n_redundant=1, flip_y=0,
n_features=20, n_clusters_per_class=1,
n_samples=5000, random_state=0)
# Test with RandomUnderSampling + Anova + LogisticRegression
clf = LogisticRegression()
rus = RandomUnderSampler(random_state=0)
filter1 = SelectKBest(f_classif, k=2)
pipe = Pipeline([('rus', rus), ('anova', filter1), ('logistic', clf)])
pipe.fit(X, y)
pipe.predict(X)
pipe.predict_proba(X)
pipe.predict_log_proba(X)
pipe.score(X, y)
示例5: test_pipeline_methods_preprocessing_svm
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import predict_proba [as 别名]
def test_pipeline_methods_preprocessing_svm():
# Test the various methods of the pipeline (preprocessing + svm).
iris = load_iris()
X = iris.data
y = iris.target
n_samples = X.shape[0]
n_classes = len(np.unique(y))
scaler = StandardScaler()
pca = PCA(n_components=2)
clf = SVC(probability=True, random_state=0, decision_function_shape='ovr')
for preprocessing in [scaler, pca]:
pipe = Pipeline([('preprocess', preprocessing), ('svc', clf)])
pipe.fit(X, y)
# check shapes of various prediction functions
predict = pipe.predict(X)
assert_equal(predict.shape, (n_samples,))
proba = pipe.predict_proba(X)
assert_equal(proba.shape, (n_samples, n_classes))
log_proba = pipe.predict_log_proba(X)
assert_equal(log_proba.shape, (n_samples, n_classes))
decision_function = pipe.decision_function(X)
assert_equal(decision_function.shape, (n_samples, n_classes))
pipe.score(X, y)
示例6: test_pipeline_methods_rus_pca_svm
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import predict_proba [as 别名]
def test_pipeline_methods_rus_pca_svm():
# Test the various methods of the pipeline (pca + svm).
X, y = make_classification(n_classes=2, class_sep=2, weights=[0.1, 0.9],
n_informative=3, n_redundant=1, flip_y=0,
n_features=20, n_clusters_per_class=1,
n_samples=5000, random_state=0)
# Test with PCA + SVC
clf = SVC(probability=True, random_state=0)
pca = PCA()
rus = RandomUnderSampler(random_state=0)
pipe = Pipeline([('rus', rus), ('pca', pca), ('svc', clf)])
pipe.fit(X, y)
pipe.predict(X)
pipe.predict_proba(X)
pipe.predict_log_proba(X)
pipe.score(X, y)
示例7: test_pipeline_memory_transformer
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import predict_proba [as 别名]
def test_pipeline_memory_transformer():
iris = load_iris()
X = iris.data
y = iris.target
cachedir = mkdtemp()
try:
memory = Memory(cachedir=cachedir, verbose=10)
# Test with Transformer + SVC
clf = SVC(probability=True, random_state=0)
transf = DummyTransf()
pipe = Pipeline([('transf', clone(transf)), ('svc', clf)])
cached_pipe = Pipeline([('transf', transf), ('svc', clf)],
memory=memory)
# Memoize the transformer at the first fit
cached_pipe.fit(X, y)
pipe.fit(X, y)
# Get the time stamp of the tranformer in the cached pipeline
expected_ts = cached_pipe.named_steps['transf'].timestamp_
# Check that cached_pipe and pipe yield identical results
assert_array_equal(pipe.predict(X), cached_pipe.predict(X))
assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X))
assert_array_equal(pipe.predict_log_proba(X),
cached_pipe.predict_log_proba(X))
assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y))
assert_array_equal(pipe.named_steps['transf'].means_,
cached_pipe.named_steps['transf'].means_)
assert not hasattr(transf, 'means_')
# Check that we are reading the cache while fitting
# a second time
cached_pipe.fit(X, y)
# Check that cached_pipe and pipe yield identical results
assert_array_equal(pipe.predict(X), cached_pipe.predict(X))
assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X))
assert_array_equal(pipe.predict_log_proba(X),
cached_pipe.predict_log_proba(X))
assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y))
assert_array_equal(pipe.named_steps['transf'].means_,
cached_pipe.named_steps['transf'].means_)
assert cached_pipe.named_steps['transf'].timestamp_ == expected_ts
# Create a new pipeline with cloned estimators
# Check that even changing the name step does not affect the cache hit
clf_2 = SVC(probability=True, random_state=0)
transf_2 = DummyTransf()
cached_pipe_2 = Pipeline([('transf_2', transf_2), ('svc', clf_2)],
memory=memory)
cached_pipe_2.fit(X, y)
# Check that cached_pipe and pipe yield identical results
assert_array_equal(pipe.predict(X), cached_pipe_2.predict(X))
assert_array_equal(pipe.predict_proba(X),
cached_pipe_2.predict_proba(X))
assert_array_equal(pipe.predict_log_proba(X),
cached_pipe_2.predict_log_proba(X))
assert_array_equal(pipe.score(X, y), cached_pipe_2.score(X, y))
assert_array_equal(pipe.named_steps['transf'].means_,
cached_pipe_2.named_steps['transf_2'].means_)
assert cached_pipe_2.named_steps['transf_2'].timestamp_ == expected_ts
finally:
shutil.rmtree(cachedir)
示例8: test_pipeline_memory_sampler
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import predict_proba [as 别名]
def test_pipeline_memory_sampler():
X, y = make_classification(
n_classes=2,
class_sep=2,
weights=[0.1, 0.9],
n_informative=3,
n_redundant=1,
flip_y=0,
n_features=20,
n_clusters_per_class=1,
n_samples=5000,
random_state=0)
cachedir = mkdtemp()
try:
memory = Memory(cachedir=cachedir, verbose=10)
# Test with Transformer + SVC
clf = SVC(probability=True, random_state=0)
transf = DummySampler()
pipe = Pipeline([('transf', clone(transf)), ('svc', clf)])
cached_pipe = Pipeline([('transf', transf), ('svc', clf)],
memory=memory)
# Memoize the transformer at the first fit
cached_pipe.fit(X, y)
pipe.fit(X, y)
# Get the time stamp of the tranformer in the cached pipeline
expected_ts = cached_pipe.named_steps['transf'].timestamp_
# Check that cached_pipe and pipe yield identical results
assert_array_equal(pipe.predict(X), cached_pipe.predict(X))
assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X))
assert_array_equal(pipe.predict_log_proba(X),
cached_pipe.predict_log_proba(X))
assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y))
assert_array_equal(pipe.named_steps['transf'].means_,
cached_pipe.named_steps['transf'].means_)
assert not hasattr(transf, 'means_')
# Check that we are reading the cache while fitting
# a second time
cached_pipe.fit(X, y)
# Check that cached_pipe and pipe yield identical results
assert_array_equal(pipe.predict(X), cached_pipe.predict(X))
assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X))
assert_array_equal(pipe.predict_log_proba(X),
cached_pipe.predict_log_proba(X))
assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y))
assert_array_equal(pipe.named_steps['transf'].means_,
cached_pipe.named_steps['transf'].means_)
assert cached_pipe.named_steps['transf'].timestamp_ == expected_ts
# Create a new pipeline with cloned estimators
# Check that even changing the name step does not affect the cache hit
clf_2 = SVC(probability=True, random_state=0)
transf_2 = DummySampler()
cached_pipe_2 = Pipeline([('transf_2', transf_2), ('svc', clf_2)],
memory=memory)
cached_pipe_2.fit(X, y)
# Check that cached_pipe and pipe yield identical results
assert_array_equal(pipe.predict(X), cached_pipe_2.predict(X))
assert_array_equal(pipe.predict_proba(X),
cached_pipe_2.predict_proba(X))
assert_array_equal(pipe.predict_log_proba(X),
cached_pipe_2.predict_log_proba(X))
assert_array_equal(pipe.score(X, y), cached_pipe_2.score(X, y))
assert_array_equal(pipe.named_steps['transf'].means_,
cached_pipe_2.named_steps['transf_2'].means_)
assert cached_pipe_2.named_steps['transf_2'].timestamp_ == expected_ts
finally:
shutil.rmtree(cachedir)