当前位置: 首页>>代码示例>>Python>>正文


Python Pipeline.fit_sample方法代码示例

本文整理汇总了Python中imblearn.pipeline.Pipeline.fit_sample方法的典型用法代码示例。如果您正苦于以下问题:Python Pipeline.fit_sample方法的具体用法?Python Pipeline.fit_sample怎么用?Python Pipeline.fit_sample使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在imblearn.pipeline.Pipeline的用法示例。


在下文中一共展示了Pipeline.fit_sample方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_pipeline_sample

# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import fit_sample [as 别名]
def test_pipeline_sample():
    # Test whether pipeline works with a sampler at the end.
    # Also test pipeline.sampler
    X, y = make_classification(n_classes=2, class_sep=2, weights=[0.1, 0.9],
                               n_informative=3, n_redundant=1, flip_y=0,
                               n_features=20, n_clusters_per_class=1,
                               n_samples=5000, random_state=0)

    rus = RandomUnderSampler(random_state=0)
    pipeline = Pipeline([('rus', rus)])

    # test transform and fit_transform:
    X_trans, y_trans = pipeline.fit(X, y).sample(X, y)
    X_trans2, y_trans2 = pipeline.fit_sample(X, y)
    X_trans3, y_trans3 = rus.fit_sample(X, y)
    assert_array_almost_equal(X_trans, X_trans2)
    assert_array_almost_equal(X_trans, X_trans3)
    assert_array_almost_equal(y_trans, y_trans2)
    assert_array_almost_equal(y_trans, y_trans3)

    pca = PCA()
    pipeline = Pipeline([('pca', pca), ('rus', rus)])

    X_trans, y_trans = pipeline.fit(X, y).sample(X, y)
    X_pca = pca.fit_transform(X)
    X_trans2, y_trans2 = rus.fit_sample(X_pca, y)
    assert_array_almost_equal(X_trans, X_trans2)
    assert_array_almost_equal(y_trans, y_trans2)
开发者ID:apyeh,项目名称:UnbalancedDataset,代码行数:30,代码来源:test_pipeline.py

示例2: test_pipeline_sample

# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import fit_sample [as 别名]
def test_pipeline_sample():
    # Test whether pipeline works with a sampler at the end.
    # Also test pipeline.sampler
    X, y = make_classification(
        n_classes=2,
        class_sep=2,
        weights=[0.1, 0.9],
        n_informative=3,
        n_redundant=1,
        flip_y=0,
        n_features=20,
        n_clusters_per_class=1,
        n_samples=5000,
        random_state=0)

    rus = RandomUnderSampler(random_state=0)
    pipeline = Pipeline([('rus', rus)])

    # test transform and fit_transform:
    X_trans, y_trans = pipeline.fit(X, y).sample(X, y)
    X_trans2, y_trans2 = pipeline.fit_sample(X, y)
    X_trans3, y_trans3 = rus.fit_sample(X, y)
    assert_allclose(X_trans, X_trans2, rtol=R_TOL)
    assert_allclose(X_trans, X_trans3, rtol=R_TOL)
    assert_allclose(y_trans, y_trans2, rtol=R_TOL)
    assert_allclose(y_trans, y_trans3, rtol=R_TOL)

    pca = PCA()
    pipeline = Pipeline([('pca', PCA()),
                         ('rus', rus)])

    X_trans, y_trans = pipeline.fit(X, y).sample(X, y)
    X_pca = pca.fit_transform(X)
    X_trans2, y_trans2 = rus.fit_sample(X_pca, y)
    # We round the value near to zero. It seems that PCA has some issue
    # with that
    X_trans[np.bitwise_and(X_trans < R_TOL, X_trans > -R_TOL)] = 0
    X_trans2[np.bitwise_and(X_trans2 < R_TOL, X_trans2 > -R_TOL)] = 0
    assert_allclose(X_trans, X_trans2, rtol=R_TOL)
    assert_allclose(y_trans, y_trans2, rtol=R_TOL)
开发者ID:glemaitre,项目名称:imbalanced-learn,代码行数:42,代码来源:test_pipeline.py


注:本文中的imblearn.pipeline.Pipeline.fit_sample方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。