本文整理汇总了Python中imblearn.pipeline.Pipeline.predict方法的典型用法代码示例。如果您正苦于以下问题:Python Pipeline.predict方法的具体用法?Python Pipeline.predict怎么用?Python Pipeline.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类imblearn.pipeline.Pipeline
的用法示例。
在下文中一共展示了Pipeline.predict方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_predict_with_predict_params
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import predict [as 别名]
def test_predict_with_predict_params():
# tests that Pipeline passes predict_params to the final estimator
# when predict is invoked
pipe = Pipeline([('transf', Transf()), ('clf', DummyEstimatorParams())])
pipe.fit(None, None)
pipe.predict(X=None, got_attribute=True)
assert pipe.named_steps['clf'].got_attribute
示例2: three_models_combined
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import predict [as 别名]
def three_models_combined(self, intrusion_features, avoidance_features, hypertension_features):
self.df = self.df[~self.df['intrusion_cutoff'].isna()]
self.df = self.df[~self.df['avoidance_cutoff'].isna()]
self.df = self.df[~self.df['hypertention_cutoff'].isna()]
print("self.df.shape", self.df.shape)
X = self.df
Y = self.df[self.target]# strict
all_Y = [self.target, "intrusion_cutoff", "avoidance_cutoff", "hypertention_cutoff"]
X_train, X_test, y_train, y_test = train_test_split(X, self.df[all_Y], test_size=0.25, random_state = 8526566, stratify=Y)
# intrusion
X_intrusion = X_train[intrusion_features].values
y_intrusion = y_train["intrusion_cutoff"].apply(lambda x: int(x))
pipe_intrusion = Pipeline(steps=[
('rfe', BorderlineSMOTE()),
('classifier', XGBClassifier(n_estimators=100, reg_alpha=1))])
scores = cross_val_score(pipe_intrusion, X_intrusion, y_intrusion, scoring='precision', cv=StratifiedKFold(5))
print(f"intrusion {sum(scores)/5}")
pipe_intrusion.fit(X_intrusion, y_intrusion)
# avoidance
X_avoidance = X_train[avoidance_features].values
y_avoidance = y_train["avoidance_cutoff"].apply(lambda x: int(x))
pipe_avoidance = Pipeline(steps=[
('classifier', XGBClassifier(n_estimators=100, scale_pos_weight=3, reg_alpha=1))])
scores = cross_val_score(pipe_avoidance, X_avoidance, y_avoidance, scoring='precision', cv=StratifiedKFold(5))
print(f"avoidance {sum(scores)/5}")
pipe_avoidance.fit(X_avoidance, y_avoidance)
# hypertension
X_hypertension = X_train[hypertension_features].values
y_hypertention = y_train["hypertention_cutoff"].apply(lambda x: int(x))
pipe_hypertension = Pipeline(steps=[
('classifier', BalancedBaggingClassifier(n_estimators=100))])
scores = cross_val_score(pipe_hypertension, X_hypertension, y_hypertention, scoring='precision', cv=StratifiedKFold(5))
print(f"hypertension {sum(scores)/5}")
pipe_hypertension.fit(X_hypertension, y_hypertention)
## combine three classifiers
X_test_hypertension = X_test[hypertension_features].values
X_test_avoidance = X_test[avoidance_features].values
X_test_intrusion = X_test[intrusion_features].values
y_pred_hypertension = pipe_hypertension.predict(X_test_hypertension)
y_pred_avoidance = pipe_avoidance.predict(X_test_avoidance)
y_pred_intrusion = pipe_intrusion.predict(X_test_intrusion)
y_pred = (y_pred_hypertension * y_pred_avoidance * y_pred_intrusion)
y_target = y_test["PCL_Strict3"].apply(lambda x: int(x))
acc = accuracy_score(y_target, y_pred)
f1 = f1_score(y_target, y_pred)
recall = recall_score(y_target, y_pred)
precision = precision_score(y_target, y_pred)
print("test scores")
print(f"acc-{acc}, f1- {f1}, recall-{recall}, precision - {precision}")
示例3: test_pipeline_methods_pca_svm
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import predict [as 别名]
def test_pipeline_methods_pca_svm():
# Test the various methods of the pipeline (pca + svm).
iris = load_iris()
X = iris.data
y = iris.target
# Test with PCA + SVC
clf = SVC(probability=True, random_state=0)
pca = PCA()
pipe = Pipeline([('pca', pca), ('svc', clf)])
pipe.fit(X, y)
pipe.predict(X)
pipe.predict_proba(X)
pipe.predict_log_proba(X)
pipe.score(X, y)
示例4: test_pipeline_methods_anova
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import predict [as 别名]
def test_pipeline_methods_anova():
# Test the various methods of the pipeline (anova).
iris = load_iris()
X = iris.data
y = iris.target
# Test with Anova + LogisticRegression
clf = LogisticRegression()
filter1 = SelectKBest(f_classif, k=2)
pipe = Pipeline([('anova', filter1), ('logistic', clf)])
pipe.fit(X, y)
pipe.predict(X)
pipe.predict_proba(X)
pipe.predict_log_proba(X)
pipe.score(X, y)
示例5: test_pipeline_methods_pca_svm
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import predict [as 别名]
def test_pipeline_methods_pca_svm():
# Test the various methods of the pipeline (pca + svm).
iris = load_iris()
X = iris.data
y = iris.target
# Test with PCA + SVC
clf = SVC(gamma='scale', probability=True, random_state=0)
pca = PCA(svd_solver='full', n_components='mle', whiten=True)
pipe = Pipeline([('pca', pca), ('svc', clf)])
pipe.fit(X, y)
pipe.predict(X)
pipe.predict_proba(X)
pipe.predict_log_proba(X)
pipe.score(X, y)
示例6: test_pipeline_methods_anova_rus
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import predict [as 别名]
def test_pipeline_methods_anova_rus():
# Test the various methods of the pipeline (anova).
X, y = make_classification(n_classes=2, class_sep=2, weights=[0.1, 0.9],
n_informative=3, n_redundant=1, flip_y=0,
n_features=20, n_clusters_per_class=1,
n_samples=5000, random_state=0)
# Test with RandomUnderSampling + Anova + LogisticRegression
clf = LogisticRegression()
rus = RandomUnderSampler(random_state=0)
filter1 = SelectKBest(f_classif, k=2)
pipe = Pipeline([('rus', rus), ('anova', filter1), ('logistic', clf)])
pipe.fit(X, y)
pipe.predict(X)
pipe.predict_proba(X)
pipe.predict_log_proba(X)
pipe.score(X, y)
示例7: test_pipeline_methods_preprocessing_svm
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import predict [as 别名]
def test_pipeline_methods_preprocessing_svm():
# Test the various methods of the pipeline (preprocessing + svm).
iris = load_iris()
X = iris.data
y = iris.target
n_samples = X.shape[0]
n_classes = len(np.unique(y))
scaler = StandardScaler()
pca = PCA(n_components=2)
clf = SVC(probability=True, random_state=0, decision_function_shape='ovr')
for preprocessing in [scaler, pca]:
pipe = Pipeline([('preprocess', preprocessing), ('svc', clf)])
pipe.fit(X, y)
# check shapes of various prediction functions
predict = pipe.predict(X)
assert_equal(predict.shape, (n_samples,))
proba = pipe.predict_proba(X)
assert_equal(proba.shape, (n_samples, n_classes))
log_proba = pipe.predict_log_proba(X)
assert_equal(log_proba.shape, (n_samples, n_classes))
decision_function = pipe.decision_function(X)
assert_equal(decision_function.shape, (n_samples, n_classes))
pipe.score(X, y)
示例8: test_pipeline_methods_rus_pca_svm
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import predict [as 别名]
def test_pipeline_methods_rus_pca_svm():
# Test the various methods of the pipeline (pca + svm).
X, y = make_classification(n_classes=2, class_sep=2, weights=[0.1, 0.9],
n_informative=3, n_redundant=1, flip_y=0,
n_features=20, n_clusters_per_class=1,
n_samples=5000, random_state=0)
# Test with PCA + SVC
clf = SVC(probability=True, random_state=0)
pca = PCA()
rus = RandomUnderSampler(random_state=0)
pipe = Pipeline([('rus', rus), ('pca', pca), ('svc', clf)])
pipe.fit(X, y)
pipe.predict(X)
pipe.predict_proba(X)
pipe.predict_log_proba(X)
pipe.score(X, y)
示例9: test_pipeline_fit_params
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import predict [as 别名]
def test_pipeline_fit_params():
# Test that the pipeline can take fit parameters
pipe = Pipeline([('transf', TransfT()), ('clf', FitParamT())])
pipe.fit(X=None, y=None, clf__should_succeed=True)
# classifier should return True
assert_true(pipe.predict(None))
# and transformer params should not be changed
assert_true(pipe.named_steps['transf'].a is None)
assert_true(pipe.named_steps['transf'].b is None)
示例10: test_pipeline_fit_params
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import predict [as 别名]
def test_pipeline_fit_params():
# Test that the pipeline can take fit parameters
pipe = Pipeline([('transf', Transf()), ('clf', FitParamT())])
pipe.fit(X=None, y=None, clf__should_succeed=True)
# classifier should return True
assert pipe.predict(None)
# and transformer params should not be changed
assert pipe.named_steps['transf'].a is None
assert pipe.named_steps['transf'].b is None
# invalid parameters should raise an error message
with raises(TypeError, match="unexpected keyword argument"):
pipe.fit(None, None, clf__bad=True)
示例11: test_pipeline_memory_transformer
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import predict [as 别名]
def test_pipeline_memory_transformer():
iris = load_iris()
X = iris.data
y = iris.target
cachedir = mkdtemp()
try:
memory = Memory(cachedir=cachedir, verbose=10)
# Test with Transformer + SVC
clf = SVC(probability=True, random_state=0)
transf = DummyTransf()
pipe = Pipeline([('transf', clone(transf)), ('svc', clf)])
cached_pipe = Pipeline([('transf', transf), ('svc', clf)],
memory=memory)
# Memoize the transformer at the first fit
cached_pipe.fit(X, y)
pipe.fit(X, y)
# Get the time stamp of the tranformer in the cached pipeline
expected_ts = cached_pipe.named_steps['transf'].timestamp_
# Check that cached_pipe and pipe yield identical results
assert_array_equal(pipe.predict(X), cached_pipe.predict(X))
assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X))
assert_array_equal(pipe.predict_log_proba(X),
cached_pipe.predict_log_proba(X))
assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y))
assert_array_equal(pipe.named_steps['transf'].means_,
cached_pipe.named_steps['transf'].means_)
assert not hasattr(transf, 'means_')
# Check that we are reading the cache while fitting
# a second time
cached_pipe.fit(X, y)
# Check that cached_pipe and pipe yield identical results
assert_array_equal(pipe.predict(X), cached_pipe.predict(X))
assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X))
assert_array_equal(pipe.predict_log_proba(X),
cached_pipe.predict_log_proba(X))
assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y))
assert_array_equal(pipe.named_steps['transf'].means_,
cached_pipe.named_steps['transf'].means_)
assert cached_pipe.named_steps['transf'].timestamp_ == expected_ts
# Create a new pipeline with cloned estimators
# Check that even changing the name step does not affect the cache hit
clf_2 = SVC(probability=True, random_state=0)
transf_2 = DummyTransf()
cached_pipe_2 = Pipeline([('transf_2', transf_2), ('svc', clf_2)],
memory=memory)
cached_pipe_2.fit(X, y)
# Check that cached_pipe and pipe yield identical results
assert_array_equal(pipe.predict(X), cached_pipe_2.predict(X))
assert_array_equal(pipe.predict_proba(X),
cached_pipe_2.predict_proba(X))
assert_array_equal(pipe.predict_log_proba(X),
cached_pipe_2.predict_log_proba(X))
assert_array_equal(pipe.score(X, y), cached_pipe_2.score(X, y))
assert_array_equal(pipe.named_steps['transf'].means_,
cached_pipe_2.named_steps['transf_2'].means_)
assert cached_pipe_2.named_steps['transf_2'].timestamp_ == expected_ts
finally:
shutil.rmtree(cachedir)
示例12: illigal_genralization_checking
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import predict [as 别名]
def illigal_genralization_checking(self, X_test, y_test):
X = self.df[self.features]
X_test = X_test[self.features]
Y = self.df[self.target]
pipe = Pipeline(steps=[('classifier', XGBClassifier(n_estimators=1000, scale_pos_weight=3, reg_alpha=1))])
y_test = y_test["intrusion_cutoff"].apply(lambda x: int(x))
scores = cross_val_score(pipe, X, Y, scoring='precision', cv=StratifiedKFold(5))
print(self.features)
print("cross vl scores")
print(sum(scores)/5)
pipe.fit(X, Y.values)
y_pred = pipe.predict(X_test)
acc = accuracy_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
print("test scores")
print(f"acc-{acc}, f1- {f1}, recall-{recall}, precision - {precision}")
示例13: test_pipeline_memory_sampler
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import predict [as 别名]
def test_pipeline_memory_sampler():
X, y = make_classification(
n_classes=2,
class_sep=2,
weights=[0.1, 0.9],
n_informative=3,
n_redundant=1,
flip_y=0,
n_features=20,
n_clusters_per_class=1,
n_samples=5000,
random_state=0)
cachedir = mkdtemp()
try:
memory = Memory(cachedir=cachedir, verbose=10)
# Test with Transformer + SVC
clf = SVC(probability=True, random_state=0)
transf = DummySampler()
pipe = Pipeline([('transf', clone(transf)), ('svc', clf)])
cached_pipe = Pipeline([('transf', transf), ('svc', clf)],
memory=memory)
# Memoize the transformer at the first fit
cached_pipe.fit(X, y)
pipe.fit(X, y)
# Get the time stamp of the tranformer in the cached pipeline
expected_ts = cached_pipe.named_steps['transf'].timestamp_
# Check that cached_pipe and pipe yield identical results
assert_array_equal(pipe.predict(X), cached_pipe.predict(X))
assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X))
assert_array_equal(pipe.predict_log_proba(X),
cached_pipe.predict_log_proba(X))
assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y))
assert_array_equal(pipe.named_steps['transf'].means_,
cached_pipe.named_steps['transf'].means_)
assert not hasattr(transf, 'means_')
# Check that we are reading the cache while fitting
# a second time
cached_pipe.fit(X, y)
# Check that cached_pipe and pipe yield identical results
assert_array_equal(pipe.predict(X), cached_pipe.predict(X))
assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X))
assert_array_equal(pipe.predict_log_proba(X),
cached_pipe.predict_log_proba(X))
assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y))
assert_array_equal(pipe.named_steps['transf'].means_,
cached_pipe.named_steps['transf'].means_)
assert cached_pipe.named_steps['transf'].timestamp_ == expected_ts
# Create a new pipeline with cloned estimators
# Check that even changing the name step does not affect the cache hit
clf_2 = SVC(probability=True, random_state=0)
transf_2 = DummySampler()
cached_pipe_2 = Pipeline([('transf_2', transf_2), ('svc', clf_2)],
memory=memory)
cached_pipe_2.fit(X, y)
# Check that cached_pipe and pipe yield identical results
assert_array_equal(pipe.predict(X), cached_pipe_2.predict(X))
assert_array_equal(pipe.predict_proba(X),
cached_pipe_2.predict_proba(X))
assert_array_equal(pipe.predict_log_proba(X),
cached_pipe_2.predict_log_proba(X))
assert_array_equal(pipe.score(X, y), cached_pipe_2.score(X, y))
assert_array_equal(pipe.named_steps['transf'].means_,
cached_pipe_2.named_steps['transf_2'].means_)
assert cached_pipe_2.named_steps['transf_2'].timestamp_ == expected_ts
finally:
shutil.rmtree(cachedir)
示例14: TargetEnsembler
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import predict [as 别名]
class TargetEnsembler(object):
def __init__(self, features):
self.features = features
def fit(self, X_train, y_train):
# create list of targets
# self.pipelines_list = []
# self.preds = []
# for i in targets :
# x. feature engineering (i)
# y = df[i]
# cv_scores (x, y, pipeline_per_target[i])
# model = pipeline_per_target[i].train(x, y)
# pipelines_list.append(model)
# preds.append(model.pred(x))
# y = df[y]
# combined_model = LogReg.train(preds, y)
# print results....
# def pred(X):
#
if intrusion:
y_pred_intrusion = self.pipe_intrusion.predict(X_intrusion)
else:
y_pred_intrusion = 1
if avoidance:
y_pred_avoidance = self.pipe_avoidance.predict(X_avoidance)
else:
y_pred_avoidance = 1
if hypertension:
y_pred_hypertension = self.pipe_hypertension.predict(X_hypertension)
else:
y_pred_hypertension = 1
if depression:
y_pred_depression = self.pipe_depression.predict(X_depression)
else:
y_pred_depression = 1
if only_avoidance:
y_pred_only_avoidance = self.pipe_only_avoidance.predict(X_only_avoidance)
else:
y_pred_only_avoidance = 1
if PCL_Strict3:
y_pred_PCL_Strict3 = self.pipe_PCL_Strict3.predict(X_PCL_Strict3)
else:
y_pred_PCL_Strict3 = 1
if regression_cutoff_33:
y_pred_regression_cutoff_33 = self.pipe_regression_cutoff_33.predict(X_regression_cutoff_33)
else:
y_pred_regression_cutoff_33 = 1
if regression_cutoff_50:
y_pred_regression_cutoff_50 = self.pipe_regression_cutoff_50.predict(X_regression_cutoff_50)
else:
y_pred_regression_cutoff_50 = 1
if tred_cutoff:
y_pred_tred_cutoff = self.pipe_tred_cutoff.predict(X_tred_cutoff)
else:
y_pred_tred_cutoff = 1
y_pred = (y_pred_hypertension & y_pred_avoidance & y_pred_intrusion & y_pred_depression &
y_pred_only_avoidance & y_pred_PCL_Strict3 & y_pred_regression_cutoff_33 &
y_pred_regression_cutoff_50 & y_pred_tred_cutoff)
y_target = y_train
acc = accuracy_score(y_target, y_pred)
f1 = f1_score(y_target, y_pred)
recall = recall_score(y_target, y_pred)
precision = precision_score(y_target, y_pred)
print("training scores")
print(f"acc-{acc}, f1- {f1}, recall-{recall}, precision - {precision}")
# combined
y_pred_hypertension = self.pipe_hypertension.predict(X_hypertension)
y_pred_avoidance = self.pipe_avoidance.predict(X_avoidance)
y_pred_intrusion = self.pipe_intrusion.predict(X_intrusion)
y_pred_regression = self.pipe_regression.predict(X_regression)
X_train["y_pred_hypertension"] = y_pred_hypertension
X_train["y_pred_avoidance"] = y_pred_avoidance
X_train["y_pred_intrusion"] = y_pred_intrusion
X_train["y_pred_regression"] = y_pred_regression
preds = ["y_pred_hypertension", "y_pred_avoidance", "y_pred_intrusion", "y_pred_regression"]
X_combined = X_train[['q6.11_NUMB_pcl2', 'q6.13_SLEEP_pcl1', 'intrusion_pcl2', 'phq2'] + preds].values
y_combined = y_train
self.pipe_combined = Pipeline(steps=[
('classifier', DecisionTreeClassifier())])
scores = cross_val_score(self.pipe_combined, X_combined, y_combined, scoring='precision', cv=StratifiedKFold(5))
print(f"hypertension {sum(scores)/5}")
#.........这里部分代码省略.........
示例15: TargetEnsembler
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import predict [as 别名]
#.........这里部分代码省略.........
# cutoff 50
if regression_cutoff_50:
X_regression_cutoff_50 = FeatureEngineering(X_train[self.features], "regression_cutoff_50").engineer_features().values
y_regression_cutoff_50 = X_train["regression_cutoff_50"].apply(lambda x: int(x))
self.pipe_regression_cutoff_50 = Pipeline(steps=[
('feature_selection', SelectKBest(k=10)),
('sampling', SMOTE(k_neighbors=10)),
('classifier', XGBClassifier(max_depth=2, n_estimators=100))])
scores = cross_val_score(self.pipe_regression_cutoff_50, X_regression_cutoff_50,
y_regression_cutoff_50, scoring='f1', cv=StratifiedKFold(5))
print(f"regression_cutoff_50 {sum(scores)/5}")
self.pipe_regression_cutoff_50.fit(X_regression_cutoff_50, y_regression_cutoff_50)
# tred_cutoff
if tred_cutoff:
X_tred_cutoff = FeatureEngineering(X_train[self.features], "tred_cutoff").engineer_features().values
y_tred_cutoff = X_train["tred_cutoff"].apply(lambda x: int(x))
self.pipe_tred_cutoff = Pipeline(steps=[
('feature_selection', SelectKBest(k=20)),
('sampling', SMOTE(k_neighbors=10)),
('classifier', XGBClassifier(n_estimators=100, max_depth=2))])
scores = cross_val_score(self.pipe_tred_cutoff, X_tred_cutoff, y_tred_cutoff, scoring='f1',
cv=StratifiedKFold(5))
print(f"tred_cutoff {sum(scores)/5}")
self.pipe_tred_cutoff.fit(X_tred_cutoff, y_tred_cutoff)
# target
if intrusion:
y_pred_intrusion = self.pipe_intrusion.predict(X_intrusion)
else:
y_pred_intrusion = 1
if avoidance:
y_pred_avoidance = self.pipe_avoidance.predict(X_avoidance)
else: y_pred_avoidance = 1
if hypertension:
y_pred_hypertension = self.pipe_hypertension.predict(X_hypertension)
else: y_pred_hypertension = 1
if depression:
y_pred_depression = self.pipe_depression.predict(X_depression)
else: y_pred_depression = 1
if only_avoidance:
y_pred_only_avoidance = self.pipe_only_avoidance.predict(X_only_avoidance)
else: y_pred_only_avoidance = 1
if PCL_Strict3:
y_pred_PCL_Strict3 = self.pipe_PCL_Strict3.predict(X_PCL_Strict3)
else: y_pred_PCL_Strict3 = 1
if regression_cutoff_33:
y_pred_regression_cutoff_33 = self.pipe_regression_cutoff_33.predict(X_regression_cutoff_33)
else: y_pred_regression_cutoff_33 = 1
if regression_cutoff_50:
y_pred_regression_cutoff_50 = self.pipe_regression_cutoff_50.predict(X_regression_cutoff_50)
else: y_pred_regression_cutoff_50 = 1
if tred_cutoff: