本文整理汇总了Python中imblearn.pipeline.Pipeline.fit_transform方法的典型用法代码示例。如果您正苦于以下问题:Python Pipeline.fit_transform方法的具体用法?Python Pipeline.fit_transform怎么用?Python Pipeline.fit_transform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类imblearn.pipeline.Pipeline
的用法示例。
在下文中一共展示了Pipeline.fit_transform方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_set_pipeline_steps
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import fit_transform [as 别名]
def test_set_pipeline_steps():
transf1 = Transf()
transf2 = Transf()
pipeline = Pipeline([('mock', transf1)])
assert pipeline.named_steps['mock'] is transf1
# Directly setting attr
pipeline.steps = [('mock2', transf2)]
assert 'mock' not in pipeline.named_steps
assert pipeline.named_steps['mock2'] is transf2
assert [('mock2', transf2)] == pipeline.steps
# Using set_params
pipeline.set_params(steps=[('mock', transf1)])
assert [('mock', transf1)] == pipeline.steps
# Using set_params to replace single step
pipeline.set_params(mock=transf2)
assert [('mock', transf2)] == pipeline.steps
# With invalid data
pipeline.set_params(steps=[('junk', ())])
with raises(TypeError):
pipeline.fit([[1]], [1])
with raises(TypeError):
pipeline.fit_transform([[1]], [1])
示例2: test_pipeline_fit_transform
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import fit_transform [as 别名]
def test_pipeline_fit_transform():
# Test whether pipeline works with a transformer missing fit_transform
iris = load_iris()
X = iris.data
y = iris.target
transft = TransfT()
pipeline = Pipeline([('mock', transft)])
# test fit_transform:
X_trans = pipeline.fit_transform(X, y)
X_trans2 = transft.fit(X, y).transform(X)
assert_array_almost_equal(X_trans, X_trans2)
示例3: test_pipeline_transform
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import fit_transform [as 别名]
def test_pipeline_transform():
# Test whether pipeline works with a transformer at the end.
# Also test pipeline.transform and pipeline.inverse_transform
iris = load_iris()
X = iris.data
pca = PCA(n_components=2)
pipeline = Pipeline([('pca', pca)])
# test transform and fit_transform:
X_trans = pipeline.fit(X).transform(X)
X_trans2 = pipeline.fit_transform(X)
X_trans3 = pca.fit_transform(X)
assert_array_almost_equal(X_trans, X_trans2)
assert_array_almost_equal(X_trans, X_trans3)
X_back = pipeline.inverse_transform(X_trans)
X_back2 = pca.inverse_transform(X_trans)
assert_array_almost_equal(X_back, X_back2)
示例4: test_set_pipeline_step_none
# 需要导入模块: from imblearn.pipeline import Pipeline [as 别名]
# 或者: from imblearn.pipeline.Pipeline import fit_transform [as 别名]
def test_set_pipeline_step_none():
# Test setting Pipeline steps to None
X = np.array([[1]])
y = np.array([1])
mult2 = Mult(mult=2)
mult3 = Mult(mult=3)
mult5 = Mult(mult=5)
def make():
return Pipeline([('m2', mult2), ('m3', mult3), ('last', mult5)])
pipeline = make()
exp = 2 * 3 * 5
assert_array_equal([[exp]], pipeline.fit_transform(X, y))
assert_array_equal([exp], pipeline.fit(X).predict(X))
assert_array_equal(X, pipeline.inverse_transform([[exp]]))
pipeline.set_params(m3=None)
exp = 2 * 5
assert_array_equal([[exp]], pipeline.fit_transform(X, y))
assert_array_equal([exp], pipeline.fit(X).predict(X))
assert_array_equal(X, pipeline.inverse_transform([[exp]]))
expected_params = {'steps': pipeline.steps,
'm2': mult2,
'm3': None,
'last': mult5,
'memory': None,
'm2__mult': 2,
'last__mult': 5}
assert pipeline.get_params(deep=True) == expected_params
pipeline.set_params(m2=None)
exp = 5
assert_array_equal([[exp]], pipeline.fit_transform(X, y))
assert_array_equal([exp], pipeline.fit(X).predict(X))
assert_array_equal(X, pipeline.inverse_transform([[exp]]))
# for other methods, ensure no AttributeErrors on None:
other_methods = ['predict_proba', 'predict_log_proba',
'decision_function', 'transform', 'score']
for method in other_methods:
getattr(pipeline, method)(X)
pipeline.set_params(m2=mult2)
exp = 2 * 5
assert_array_equal([[exp]], pipeline.fit_transform(X, y))
assert_array_equal([exp], pipeline.fit(X).predict(X))
assert_array_equal(X, pipeline.inverse_transform([[exp]]))
pipeline = make()
pipeline.set_params(last=None)
# mult2 and mult3 are active
exp = 6
pipeline.fit(X, y)
pipeline.transform(X)
assert_array_equal([[exp]], pipeline.fit(X, y).transform(X))
assert_array_equal([[exp]], pipeline.fit_transform(X, y))
assert_array_equal(X, pipeline.inverse_transform([[exp]]))
with raises(AttributeError, match="has no attribute 'predict'"):
getattr(pipeline, 'predict')
# Check None step at construction time
exp = 2 * 5
pipeline = Pipeline([('m2', mult2), ('m3', None), ('last', mult5)])
assert_array_equal([[exp]], pipeline.fit_transform(X, y))
assert_array_equal([exp], pipeline.fit(X).predict(X))
assert_array_equal(X, pipeline.inverse_transform([[exp]]))