当前位置: 首页>>代码示例>>Python>>正文


Python pipeline.Pipeline类代码示例

本文整理汇总了Python中imblearn.pipeline.Pipeline的典型用法代码示例。如果您正苦于以下问题:Python Pipeline类的具体用法?Python Pipeline怎么用?Python Pipeline使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了Pipeline类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_predict_with_predict_params

def test_predict_with_predict_params():
    # tests that Pipeline passes predict_params to the final estimator
    # when predict is invoked
    pipe = Pipeline([('transf', Transf()), ('clf', DummyEstimatorParams())])
    pipe.fit(None, None)
    pipe.predict(X=None, got_attribute=True)
    assert pipe.named_steps['clf'].got_attribute
开发者ID:scikit-learn-contrib,项目名称:imbalanced-learn,代码行数:7,代码来源:test_pipeline.py

示例2: test_pipeline_sample

def test_pipeline_sample():
    # Test whether pipeline works with a sampler at the end.
    # Also test pipeline.sampler
    X, y = make_classification(n_classes=2, class_sep=2, weights=[0.1, 0.9],
                               n_informative=3, n_redundant=1, flip_y=0,
                               n_features=20, n_clusters_per_class=1,
                               n_samples=5000, random_state=0)

    rus = RandomUnderSampler(random_state=0)
    pipeline = Pipeline([('rus', rus)])

    # test transform and fit_transform:
    X_trans, y_trans = pipeline.fit(X, y).sample(X, y)
    X_trans2, y_trans2 = pipeline.fit_sample(X, y)
    X_trans3, y_trans3 = rus.fit_sample(X, y)
    assert_array_almost_equal(X_trans, X_trans2)
    assert_array_almost_equal(X_trans, X_trans3)
    assert_array_almost_equal(y_trans, y_trans2)
    assert_array_almost_equal(y_trans, y_trans3)

    pca = PCA()
    pipeline = Pipeline([('pca', pca), ('rus', rus)])

    X_trans, y_trans = pipeline.fit(X, y).sample(X, y)
    X_pca = pca.fit_transform(X)
    X_trans2, y_trans2 = rus.fit_sample(X_pca, y)
    assert_array_almost_equal(X_trans, X_trans2)
    assert_array_almost_equal(y_trans, y_trans2)
开发者ID:apyeh,项目名称:UnbalancedDataset,代码行数:28,代码来源:test_pipeline.py

示例3: test_pipeline_init

def test_pipeline_init():
    # Test the various init parameters of the pipeline.
    assert_raises(TypeError, Pipeline)
    # Check that we can't instantiate pipelines with objects without fit
    # method
    pipe = assert_raises(TypeError, Pipeline, [('svc', IncorrectT)])
    # Smoke test with only an estimator
    clf = T()
    pipe = Pipeline([('svc', clf)])
    assert_equal(
        pipe.get_params(deep=True),
        dict(
            svc__a=None, svc__b=None, svc=clf, **pipe.get_params(deep=False)))

    # Check that params are set
    pipe.set_params(svc__a=0.1)
    assert_equal(clf.a, 0.1)
    assert_equal(clf.b, None)
    # Smoke test the repr:
    repr(pipe)

    # Test with two objects
    clf = SVC()
    filter1 = SelectKBest(f_classif)
    pipe = Pipeline([('anova', filter1), ('svc', clf)])

    # Check that we can't use the same stage name twice
    assert_raises(ValueError, Pipeline, [('svc', SVC()), ('svc', SVC())])

    # Check that params are set
    pipe.set_params(svc__C=0.1)
    assert_equal(clf.C, 0.1)
    # Smoke test the repr:
    repr(pipe)

    # Check that params are not set when naming them wrong
    assert_raises(ValueError, pipe.set_params, anova__C=0.1)

    # Test clone
    pipe2 = clone(pipe)
    assert_false(pipe.named_steps['svc'] is pipe2.named_steps['svc'])

    # Check that apart from estimators, the parameters are the same
    params = pipe.get_params(deep=True)
    params2 = pipe2.get_params(deep=True)

    for x in pipe.get_params(deep=False):
        params.pop(x)

    for x in pipe2.get_params(deep=False):
        params2.pop(x)

    # Remove estimators that where copied
    params.pop('svc')
    params.pop('anova')
    params2.pop('svc')
    params2.pop('anova')
    assert_equal(params, params2)
开发者ID:kellyhennigan,项目名称:cueexp_scripts,代码行数:58,代码来源:test_pipeline.py

示例4: test_pipeline_raise_set_params_error

def test_pipeline_raise_set_params_error():
    # Test pipeline raises set params error message for nested models.
    pipe = Pipeline([('cls', LinearRegression())])
    with raises(ValueError, match="Invalid parameter"):
        pipe.set_params(fake='nope')

    # nested model check
    with raises(ValueError, match="Invalid parameter"):
        pipe.set_params(fake__estimator='nope')
开发者ID:glemaitre,项目名称:imbalanced-learn,代码行数:9,代码来源:test_pipeline.py

示例5: test_fit_predict_with_intermediate_fit_params

def test_fit_predict_with_intermediate_fit_params():
    # tests that Pipeline passes fit_params to intermediate steps
    # when fit_predict is invoked
    pipe = Pipeline([('transf', TransfFitParams()), ('clf', FitParamT())])
    pipe.fit_predict(
        X=None, y=None, transf__should_get_this=True, clf__should_succeed=True)
    assert pipe.named_steps['transf'].fit_params['should_get_this']
    assert pipe.named_steps['clf'].successful
    assert 'should_succeed' not in pipe.named_steps['transf'].fit_params
开发者ID:scikit-learn-contrib,项目名称:imbalanced-learn,代码行数:9,代码来源:test_pipeline.py

示例6: test_pipeline_fit_params

def test_pipeline_fit_params():
    # Test that the pipeline can take fit parameters
    pipe = Pipeline([('transf', TransfT()), ('clf', FitParamT())])
    pipe.fit(X=None, y=None, clf__should_succeed=True)
    # classifier should return True
    assert_true(pipe.predict(None))
    # and transformer params should not be changed
    assert_true(pipe.named_steps['transf'].a is None)
    assert_true(pipe.named_steps['transf'].b is None)
开发者ID:apyeh,项目名称:UnbalancedDataset,代码行数:9,代码来源:test_pipeline.py

示例7: test_pipeline_methods_preprocessing_svm

def test_pipeline_methods_preprocessing_svm():
    # Test the various methods of the pipeline (preprocessing + svm).
    iris = load_iris()
    X = iris.data
    y = iris.target
    n_samples = X.shape[0]
    n_classes = len(np.unique(y))
    scaler = StandardScaler()
    pca = PCA(n_components=2)
    clf = SVC(probability=True, random_state=0, decision_function_shape='ovr')

    for preprocessing in [scaler, pca]:
        pipe = Pipeline([('preprocess', preprocessing), ('svc', clf)])
        pipe.fit(X, y)

        # check shapes of various prediction functions
        predict = pipe.predict(X)
        assert_equal(predict.shape, (n_samples,))

        proba = pipe.predict_proba(X)
        assert_equal(proba.shape, (n_samples, n_classes))

        log_proba = pipe.predict_log_proba(X)
        assert_equal(log_proba.shape, (n_samples, n_classes))

        decision_function = pipe.decision_function(X)
        assert_equal(decision_function.shape, (n_samples, n_classes))

        pipe.score(X, y)
开发者ID:apyeh,项目名称:UnbalancedDataset,代码行数:29,代码来源:test_pipeline.py

示例8: test_pipeline_fit_transform

def test_pipeline_fit_transform():
    # Test whether pipeline works with a transformer missing fit_transform
    iris = load_iris()
    X = iris.data
    y = iris.target
    transft = TransfT()
    pipeline = Pipeline([('mock', transft)])

    # test fit_transform:
    X_trans = pipeline.fit_transform(X, y)
    X_trans2 = transft.fit(X, y).transform(X)
    assert_array_almost_equal(X_trans, X_trans2)
开发者ID:apyeh,项目名称:UnbalancedDataset,代码行数:12,代码来源:test_pipeline.py

示例9: test_pipeline_wrong_memory

def test_pipeline_wrong_memory():
    # Test that an error is raised when memory is not a string or a Memory
    # instance
    iris = load_iris()
    X = iris.data
    y = iris.target
    # Define memory as an integer
    memory = 1
    cached_pipe = Pipeline(
        [('transf', DummyTransf()), ('svc', SVC(gamma='scale'))],
        memory=memory)
    error_regex = ("string or have the same interface as")
    with raises(ValueError, match=error_regex):
        cached_pipe.fit(X, y)
开发者ID:scikit-learn-contrib,项目名称:imbalanced-learn,代码行数:14,代码来源:test_pipeline.py

示例10: test_pipeline_sample_transform

def test_pipeline_sample_transform():
    # Test whether pipeline works with a sampler at the end.
    # Also test pipeline.sampler
    X, y = make_classification(n_classes=2, class_sep=2, weights=[0.1, 0.9],
                               n_informative=3, n_redundant=1, flip_y=0,
                               n_features=20, n_clusters_per_class=1,
                               n_samples=5000, random_state=0)

    rus = RandomUnderSampler(random_state=0)
    pca = PCA()
    pca2 = PCA()
    pipeline = Pipeline([('pca', pca), ('rus', rus), ('pca2', pca2)])

    pipeline.fit(X, y).transform(X)
开发者ID:apyeh,项目名称:UnbalancedDataset,代码行数:14,代码来源:test_pipeline.py

示例11: test_pipeline_wrong_memory

def test_pipeline_wrong_memory():
    # Test that an error is raised when memory is not a string or a Memory
    # instance
    iris = load_iris()
    X = iris.data
    y = iris.target
    # Define memory as an integer
    memory = 1
    cached_pipe = Pipeline([('transf', DummyTransf()), ('svc', SVC())],
                           memory=memory)
    error_regex = ("'memory' should either be a string or a joblib.Memory"
                   " instance, got 'memory=1' instead.")
    with raises(ValueError, match=error_regex):
        cached_pipe.fit(X, y)
开发者ID:glemaitre,项目名称:imbalanced-learn,代码行数:14,代码来源:test_pipeline.py

示例12: test_fit_predict_on_pipeline

def test_fit_predict_on_pipeline():
    # test that the fit_predict method is implemented on a pipeline
    # test that the fit_predict on pipeline yields same results as applying
    # transform and clustering steps separately
    iris = load_iris()
    scaler = StandardScaler()
    km = KMeans(random_state=0)

    # first compute the transform and clustering step separately
    scaled = scaler.fit_transform(iris.data)
    separate_pred = km.fit_predict(scaled)

    # use a pipeline to do the transform and clustering in one step
    pipe = Pipeline([('scaler', scaler), ('Kmeans', km)])
    pipeline_pred = pipe.fit_predict(iris.data)

    assert_array_almost_equal(pipeline_pred, separate_pred)
开发者ID:apyeh,项目名称:UnbalancedDataset,代码行数:17,代码来源:test_pipeline.py

示例13: test_pipeline_transform

def test_pipeline_transform():
    # Test whether pipeline works with a transformer at the end.
    # Also test pipeline.transform and pipeline.inverse_transform
    iris = load_iris()
    X = iris.data
    pca = PCA(n_components=2)
    pipeline = Pipeline([('pca', pca)])

    # test transform and fit_transform:
    X_trans = pipeline.fit(X).transform(X)
    X_trans2 = pipeline.fit_transform(X)
    X_trans3 = pca.fit_transform(X)
    assert_array_almost_equal(X_trans, X_trans2)
    assert_array_almost_equal(X_trans, X_trans3)

    X_back = pipeline.inverse_transform(X_trans)
    X_back2 = pca.inverse_transform(X_trans)
    assert_array_almost_equal(X_back, X_back2)
开发者ID:apyeh,项目名称:UnbalancedDataset,代码行数:18,代码来源:test_pipeline.py

示例14: illigal_genralization_checking

    def illigal_genralization_checking(self, X_test, y_test):

        X = self.df[self.features]
        X_test = X_test[self.features]
        Y = self.df[self.target]
        pipe = Pipeline(steps=[('classifier', XGBClassifier(n_estimators=1000, scale_pos_weight=3, reg_alpha=1))])
        y_test = y_test["intrusion_cutoff"].apply(lambda x: int(x))
        scores = cross_val_score(pipe, X, Y, scoring='precision', cv=StratifiedKFold(5))
        print(self.features)
        print("cross vl scores")
        print(sum(scores)/5)
        pipe.fit(X, Y.values)
        y_pred = pipe.predict(X_test)
        acc = accuracy_score(y_test, y_pred)
        f1 = f1_score(y_test, y_pred)
        recall = recall_score(y_test, y_pred)
        precision = precision_score(y_test, y_pred)
        print("test scores")
        print(f"acc-{acc}, f1- {f1}, recall-{recall}, precision - {precision}")
开发者ID:nogur9,项目名称:PTSD,代码行数:19,代码来源:EDA_backend.py

示例15: test_pipeline_sample_weight_supported

def test_pipeline_sample_weight_supported():
    # Pipeline should pass sample_weight
    X = np.array([[1, 2]])
    pipe = Pipeline([('transf', Transf()), ('clf', FitParamT())])
    pipe.fit(X, y=None)
    assert pipe.score(X) == 3
    assert pipe.score(X, y=None) == 3
    assert pipe.score(X, y=None, sample_weight=None) == 3
    assert pipe.score(X, sample_weight=np.array([2, 3])) == 8
开发者ID:glemaitre,项目名称:imbalanced-learn,代码行数:9,代码来源:test_pipeline.py


注:本文中的imblearn.pipeline.Pipeline类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。