本文整理汇总了Python中filterpy.kalman.KalmanFilter.Q方法的典型用法代码示例。如果您正苦于以下问题:Python KalmanFilter.Q方法的具体用法?Python KalmanFilter.Q怎么用?Python KalmanFilter.Q使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类filterpy.kalman.KalmanFilter
的用法示例。
在下文中一共展示了KalmanFilter.Q方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: tracker1
# 需要导入模块: from filterpy.kalman import KalmanFilter [as 别名]
# 或者: from filterpy.kalman.KalmanFilter import Q [as 别名]
def tracker1():
#
#
# Design 2D filter
#
#
# 1. Choose state vars - x
# 2. Design state trans. Function - F
tracker = KalmanFilter(dim_x=4, dim_z=2)
dt = 1.
# time step 1 second
tracker.F = np.array([[1, dt, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, dt],
[0, 0, 0, 1]])
# 3. Design Process Noise Mat - Q
v = 0.05
q = Q_discrete_white_noise(dim=2, dt=dt, var=v)
tracker.Q = block_diag(q, q)
# 4. B
# 5. Design measurement function
tracker.H = np.array([[1/0.3048, 0, 0, 0],
[0, 0, 1/0.3048, 0]])
# 6. Design Meas. Noise Mat - R
tracker.R = np.array([[5, 0],[0, 5]])
# Init conditions
tracker.x = np.array([[0, 0, 0, 0]]).T
tracker.P = np.eye(4) * 500.
return tracker
示例2: ball_filter6
# 需要导入模块: from filterpy.kalman import KalmanFilter [as 别名]
# 或者: from filterpy.kalman.KalmanFilter import Q [as 别名]
def ball_filter6(dt,R=1., Q = 0.1):
f1 = KalmanFilter(dim=6)
g = 10
f1.F = np.mat ([[1., dt, dt**2, 0, 0, 0],
[0, 1., dt, 0, 0, 0],
[0, 0, 1., 0, 0, 0],
[0, 0, 0., 1., dt, -0.5*dt*dt*g],
[0, 0, 0, 0, 1., -g*dt],
[0, 0, 0, 0, 0., 1.]])
f1.H = np.mat([[1,0,0,0,0,0],
[0,0,0,0,0,0],
[0,0,0,0,0,0],
[0,0,0,1,0,0],
[0,0,0,0,0,0],
[0,0,0,0,0,0]])
f1.R = np.mat(np.eye(6)) * R
f1.Q = np.zeros((6,6))
f1.Q[2,2] = Q
f1.Q[5,5] = Q
f1.x = np.mat([0, 0 , 0, 0, 0, 0]).T
f1.P = np.eye(6) * 50.
f1.B = 0.
f1.u = 0
return f1
示例3: test_rts
# 需要导入模块: from filterpy.kalman import KalmanFilter [as 别名]
# 或者: from filterpy.kalman.KalmanFilter import Q [as 别名]
def test_rts():
fk = KalmanFilter(dim_x=2, dim_z=1)
fk.x = np.array([-1., 1.]) # initial state (location and velocity)
fk.F = np.array([[1.,1.],
[0.,1.]]) # state transition matrix
fk.H = np.array([[1.,0.]]) # Measurement function
fk.P = .01 # covariance matrix
fk.R = 5 # state uncertainty
fk.Q = 0.001 # process uncertainty
zs = [t + random.randn()*4 for t in range(40)]
mu, cov, _, _ = fk.batch_filter (zs)
mus = [x[0] for x in mu]
M, P, _, _ = fk.rts_smoother(mu, cov)
if DO_PLOT:
p1, = plt.plot(zs,'cyan', alpha=0.5)
p2, = plt.plot(M[:,0],c='b')
p3, = plt.plot(mus,c='r')
p4, = plt.plot([0, len(zs)], [0, len(zs)], 'g') # perfect result
plt.legend([p1, p2, p3, p4],
["measurement", "RKS", "KF output", "ideal"], loc=4)
plt.show()
示例4: template
# 需要导入模块: from filterpy.kalman import KalmanFilter [as 别名]
# 或者: from filterpy.kalman.KalmanFilter import Q [as 别名]
def template():
kf = KalmanFilter(dim_x=2, dim_z=1)
# x0
kf.x = np.array([[.0], [.0]])
# P - change over time
kf.P = np.diag([500., 49.])
# F - state transition matrix
dt = .1
kf.F = np.array([[1, dt], [0, 1]])
## now can predict
## дисперсия растет и становится видна корреляция
#plot_covariance_ellipse(kf.x, kf.P, edgecolor='r')
#kf.predict()
#plot_covariance_ellipse(kf.x, kf.P, edgecolor='k', ls='dashed')
#show()
# Control information
kf.B = 0
# !!Attention!! Q! Process noise
kf.Q = Q_discrete_white_noise( dim=2, dt=dt, var=2.35)
# H - measurement function
kf.H = np.array([[1., 0.]])
# R - measure noise matrix
kf.R = np.array([[5.]])
示例5: createLegKF
# 需要导入模块: from filterpy.kalman import KalmanFilter [as 别名]
# 或者: from filterpy.kalman.KalmanFilter import Q [as 别名]
def createLegKF(x, y):
# kalman_filter = KalmanFilter(dim_x=4, dim_z=2)
kalman_filter = KalmanFilter(dim_x=4, dim_z=4)
dt = 0.1
KF_F = np.array([[1.0, dt, 0, 0], [0, 1.0, 0, 0], [0, 0, 1.0, dt], [0, 0, 0, 1.0]])
KF_q = 0.7 # 0.3
KF_Q = np.vstack(
(
np.hstack((Q_discrete_white_noise(2, dt=0.1, var=KF_q), np.zeros((2, 2)))),
np.hstack((np.zeros((2, 2)), Q_discrete_white_noise(2, dt=0.1, var=KF_q))),
)
)
KF_pd = 25.0
KF_pv = 10.0
KF_P = np.diag([KF_pd, KF_pv, KF_pd, KF_pv])
KF_rd = 0.05
KF_rv = 0.2 # 0.5
# KF_R = np.diag([KF_rd,KF_rd])
KF_R = np.diag([KF_rd, KF_rd, KF_rv, KF_rv])
# KF_H = np.array([[1.,0,0,0],[0,0,1.,0]])
KF_H = np.array([[1.0, 0, 0, 0], [0, 0, 1.0, 0], [0, 1.0, 0, 0], [0, 0, 0, 1.0]])
kalman_filter.x = np.array([x, 0, y, 0])
kalman_filter.F = KF_F
kalman_filter.H = KF_H
kalman_filter.Q = KF_Q
kalman_filter.B = 0
kalman_filter.R = KF_R
kalman_filter.P = KF_P
return kalman_filter
示例6: ball_filter4
# 需要导入模块: from filterpy.kalman import KalmanFilter [as 别名]
# 或者: from filterpy.kalman.KalmanFilter import Q [as 别名]
def ball_filter4(dt,R=1., Q = 0.1):
f1 = KalmanFilter(dim=4)
g = 10
f1.F = np.mat ([[1., dt, 0, 0,],
[0, 1., 0, 0],
[0, 0, 1., dt],
[0, 0, 0., 1.]])
f1.H = np.mat([[1,0,0,0],
[0,0,0,0],
[0,0,1,0],
[0,0,0,0]])
f1.B = np.mat([[0,0,0,0],
[0,0,0,0],
[0,0,1.,0],
[0,0,0,1.]])
f1.u = np.mat([[0],
[0],
[-0.5*g*dt**2],
[-g*dt]])
f1.R = np.mat(np.eye(4)) * R
f1.Q = np.zeros((4,4))
f1.Q[1,1] = Q
f1.Q[3,3] = Q
f1.x = np.mat([0, 0 , 0, 0]).T
f1.P = np.eye(4) * 50.
return f1
示例7: test_noisy_1d
# 需要导入模块: from filterpy.kalman import KalmanFilter [as 别名]
# 或者: from filterpy.kalman.KalmanFilter import Q [as 别名]
def test_noisy_1d():
f = KalmanFilter(dim_x=2, dim_z=1)
f.x = np.array([[2.0], [0.0]]) # initial state (location and velocity)
f.F = np.array([[1.0, 1.0], [0.0, 1.0]]) # state transition matrix
f.H = np.array([[1.0, 0.0]]) # Measurement function
f.P *= 1000.0 # covariance matrix
f.R = 5 # state uncertainty
f.Q = 0.0001 # process uncertainty
fsq = SquareRootKalmanFilter(dim_x=2, dim_z=1)
fsq.x = np.array([[2.0], [0.0]]) # initial state (location and velocity)
fsq.F = np.array([[1.0, 1.0], [0.0, 1.0]]) # state transition matrix
fsq.H = np.array([[1.0, 0.0]]) # Measurement function
fsq.P = np.eye(2) * 1000.0 # covariance matrix
fsq.R = 5 # state uncertainty
fsq.Q = 0.0001 # process uncertainty
measurements = []
results = []
zs = []
for t in range(100):
# create measurement = t plus white noise
z = t + random.randn() * 20
zs.append(z)
# perform kalman filtering
f.update(z)
f.predict()
fsq.update(z)
fsq.predict()
assert abs(f.x[0, 0] - fsq.x[0, 0]) < 1.0e-12
assert abs(f.x[1, 0] - fsq.x[1, 0]) < 1.0e-12
# save data
results.append(f.x[0, 0])
measurements.append(z)
p = f.P - fsq.P
print(f.P)
print(fsq.P)
for i in range(f.P.shape[0]):
assert abs(f.P[i, i] - fsq.P[i, i]) < 0.01
# now do a batch run with the stored z values so we can test that
# it is working the same as the recursive implementation.
# give slightly different P so result is slightly different
f.x = np.array([[2.0, 0]]).T
f.P = np.eye(2) * 100.0
m, c, _, _ = f.batch_filter(zs, update_first=False)
示例8: test_1d_0P
# 需要导入模块: from filterpy.kalman import KalmanFilter [as 别名]
# 或者: from filterpy.kalman.KalmanFilter import Q [as 别名]
def test_1d_0P():
global inf
f = KalmanFilter (dim_x=2, dim_z=1)
inf = InformationFilter (dim_x=2, dim_z=1)
f.x = np.array([[2.],
[0.]]) # initial state (location and velocity)
f.F = (np.array([[1., 1.],
[0., 1.]])) # state transition matrix
f.H = np.array([[1., 0.]]) # Measurement function
f.R = np.array([[5.]]) # state uncertainty
f.Q = np.eye(2)*0.0001 # process uncertainty
f.P = np.diag([20., 20.])
inf.x = f.x.copy()
inf.F = f.F.copy()
inf.H = np.array([[1.,0.]]) # Measurement function
inf.R_inv *= 1./5 # state uncertainty
inf.Q = np.eye(2)*0.0001
inf.P_inv = 0.000000000000000000001
#inf.P_inv = inv(f.P)
m = []
r = []
r2 = []
zs = []
for t in range (50):
# create measurement = t plus white noise
z = t + random.randn()* np.sqrt(5)
zs.append(z)
# perform kalman filtering
f.predict()
f.update(z)
inf.predict()
inf.update(z)
try:
print(t, inf.P)
except:
pass
# save data
r.append (f.x[0,0])
r2.append (inf.x[0,0])
m.append(z)
#assert np.allclose(f.x, inf.x), f'{t}: {f.x.T} {inf.x.T}'
if DO_PLOT:
plt.plot(m)
plt.plot(r)
plt.plot(r2)
示例9: sensor_fusion_test
# 需要导入模块: from filterpy.kalman import KalmanFilter [as 别名]
# 或者: from filterpy.kalman.KalmanFilter import Q [as 别名]
def sensor_fusion_test(wheel_sigma=2., gps_sigma=4.):
dt = 0.1
kf2 = KalmanFilter(dim_x=2, dim_z=2)
kf2.F = array ([[1., dt], [0., 1.]])
kf2.H = array ([[1., 0.], [1., 0.]])
kf2.x = array ([[0.], [0.]])
kf2.Q = array ([[dt**3/3, dt**2/2],
[dt**2/2, dt]]) * 0.02
kf2.P *= 100
kf2.R[0,0] = wheel_sigma**2
kf2.R[1,1] = gps_sigma**2
random.seed(SEED)
xs = []
zs = []
nom = []
for i in range(1, 100):
m0 = i + randn()*wheel_sigma
m1 = i + randn()*gps_sigma
if gps_sigma >1e40:
m1 = -1e40
z = array([[m0], [m1]])
kf2.predict()
kf2.update(z)
xs.append(kf2.x.T[0])
zs.append(z.T[0])
nom.append(i)
xs = asarray(xs)
zs = asarray(zs)
nom = asarray(nom)
res = nom-xs[:,0]
std_dev = np.std(res)
print('fusion std: {:.3f}'.format (np.std(res)))
if DO_PLOT:
plt.subplot(211)
plt.plot(xs[:,0])
#plt.plot(zs[:,0])
#plt.plot(zs[:,1])
plt.subplot(212)
plt.axhline(0)
plt.plot(res)
plt.show()
print(kf2.Q)
print(kf2.K)
return std_dev
示例10: pos_vel_filter
# 需要导入模块: from filterpy.kalman import KalmanFilter [as 别名]
# 或者: from filterpy.kalman.KalmanFilter import Q [as 别名]
def pos_vel_filter(x, P, R, Q=0., dt=1.0):
""" Returns a KalmanFilter which implements a
constant velocity model for a state [x dx].T
"""
kf = KalmanFilter(dim_x=2, dim_z=1)
kf.x = np.array([x[0], x[1]]) # location and velocity6.4. TRACKING A DOG
kf.F = np.array([[1, dt], [0, 1]]) # state transition matrix
kf.H = np.array([[1, 0]]) # Measurement function
kf.R *= R # measurement uncertainty
if np.isscalar(P):
kf.P *= P # covariance matrix
else:
kf.P[:] = P
if np.isscalar(Q):
kf.Q = Q_discrete_white_noise(dim=2, dt=dt, var=Q)
else:
kf.Q = Q
return kf
示例11: test_against_kf
# 需要导入模块: from filterpy.kalman import KalmanFilter [as 别名]
# 或者: from filterpy.kalman.KalmanFilter import Q [as 别名]
def test_against_kf():
inv = np.linalg.inv
dt = 1.0
IM = np.eye(2)
Q = np.array([[.25, 0.5], [0.5, 1]])
F = np.array([[1, dt], [0, 1]])
#QI = inv(Q)
P = inv(IM)
from filterpy.kalman import InformationFilter
from filterpy.common import Q_discrete_white_noise
#f = IF2(2, 1)
r_std = .2
R = np.array([[r_std*r_std]])
RI = inv(R)
'''f.F = F.copy()
f.H = np.array([[1, 0.]])
f.RI = RI.copy()
f.Q = Q.copy()
f.IM = IM.copy()'''
kf = KalmanFilter(2, 1)
kf.F = F.copy()
kf.H = np.array([[1, 0.]])
kf.R = R.copy()
kf.Q = Q.copy()
f0 = InformationFilter(2, 1)
f0.F = F.copy()
f0.H = np.array([[1, 0.]])
f0.R_inv = RI.copy()
f0.Q = Q.copy()
#f.IM = np.zeros((2,2))
for i in range(1, 50):
z = i + (np.random.rand() * r_std)
f0.predict()
#f.predict()
kf.predict()
f0.update(z)
#f.update(z)
kf.update(z)
print(f0.x.T, kf.x.T)
assert np.allclose(f0.x, kf.x)
示例12: test_noisy_1d
# 需要导入模块: from filterpy.kalman import KalmanFilter [as 别名]
# 或者: from filterpy.kalman.KalmanFilter import Q [as 别名]
def test_noisy_1d():
f = KalmanFilter(dim_x=2, dim_z=1)
f.x = np.array([[2.],
[0.]]) # initial state (location and velocity)
f.F = np.array([[1., 1.],
[0., 1.]]) # state transition matrix
f.H = np.array([[1., 0.]]) # Measurement function
f.P *= 1000. # covariance matrix
f.R = 5 # state uncertainty
f.Q = 0.0001 # process uncertainty
measurements = []
results = []
zs = []
for t in range(100):
# create measurement = t plus white noise
z = t + random.randn()*20
zs.append(z)
# perform kalman filtering
f.update(z)
f.predict()
# save data
results.append(f.x[0, 0])
measurements.append(z)
# test mahalanobis
a = np.zeros(f.y.shape)
maha = scipy_mahalanobis(a, f.y, f.SI)
assert f.mahalanobis == approx(maha)
# now do a batch run with the stored z values so we can test that
# it is working the same as the recursive implementation.
# give slightly different P so result is slightly different
f.x = np.array([[2., 0]]).T
f.P = np.eye(2) * 100.
s = Saver(f)
m, c, _, _ = f.batch_filter(zs, update_first=False, saver=s)
s.to_array()
assert len(s.x) == len(zs)
assert len(s.x) == len(s)
# plot data
if DO_PLOT:
p1, = plt.plot(measurements, 'r', alpha=0.5)
p2, = plt.plot(results, 'b')
p4, = plt.plot(m[:, 0], 'm')
p3, = plt.plot([0, 100], [0, 100], 'g') # perfect result
plt.legend([p1, p2, p3, p4],
["noisy measurement", "KF output", "ideal", "batch"], loc=4)
plt.show()
示例13: dog_tracking_filter
# 需要导入模块: from filterpy.kalman import KalmanFilter [as 别名]
# 或者: from filterpy.kalman.KalmanFilter import Q [as 别名]
def dog_tracking_filter(R,Q=0,cov=1.):
f = KalmanFilter (dim_x=2, dim_z=1)
f.x = np.matrix([[0], [0]]) # initial state (location and velocity)
f.F = np.matrix([[1,1],[0,1]]) # state transition matrix
f.H = np.matrix([[1,0]]) # Measurement function
f.R = R # measurement uncertainty
f.P *= cov # covariance matrix
f.Q = Q
return f
示例14: make_cv_filter
# 需要导入模块: from filterpy.kalman import KalmanFilter [as 别名]
# 或者: from filterpy.kalman.KalmanFilter import Q [as 别名]
def make_cv_filter(dt, noise_factor):
cvfilter = KalmanFilter(dim_x = 2, dim_z=1)
cvfilter.x = array([0., 0.])
cvfilter.P *= 3
cvfilter.R *= noise_factor**2
cvfilter.F = array([[1, dt],
[0, 1]], dtype=float)
cvfilter.H = array([[1, 0]], dtype=float)
cvfilter.Q = Q_discrete_white_noise(dim=2, dt=dt, var=0.02)
return cvfilter
示例15: make_ca_filter
# 需要导入模块: from filterpy.kalman import KalmanFilter [as 别名]
# 或者: from filterpy.kalman.KalmanFilter import Q [as 别名]
def make_ca_filter(dt, noise_factor):
cafilter = KalmanFilter(dim_x=3, dim_z=1)
cafilter.x = array([0., 0., 0.])
cafilter.P *= 3
cafilter.R *= noise_factor**2
cafilter.Q = Q_discrete_white_noise(dim=3, dt=dt, var=0.02)
cafilter.F = array([[1, dt, 0.5*dt*dt],
[0, 1, dt],
[0, 0, 1]], dtype=float)
cafilter.H = array([[1, 0, 0]], dtype=float)
return cafilter