当前位置: 首页>>代码示例>>Python>>正文


Python KalmanFilter.Q[0:3,0:3]方法代码示例

本文整理汇总了Python中filterpy.kalman.KalmanFilter.Q[0:3,0:3]方法的典型用法代码示例。如果您正苦于以下问题:Python KalmanFilter.Q[0:3,0:3]方法的具体用法?Python KalmanFilter.Q[0:3,0:3]怎么用?Python KalmanFilter.Q[0:3,0:3]使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在filterpy.kalman.KalmanFilter的用法示例。


在下文中一共展示了KalmanFilter.Q[0:3,0:3]方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_circle

# 需要导入模块: from filterpy.kalman import KalmanFilter [as 别名]
# 或者: from filterpy.kalman.KalmanFilter import Q[0:3,0:3] [as 别名]
def test_circle():
    from filterpy.kalman import KalmanFilter
    from math import radians
    def hx(x):
        radius = x[0]
        angle = x[1]
        x = cos(radians(angle)) * radius
        y = sin(radians(angle)) * radius
        return np.array([x, y])

    def fx(x, dt):
        return np.array([x[0], x[1]+x[2], x[2]])

    std_noise = .1


    f = UKF(dim_x=3, dim_z=2, dt=.01, hx=hx, fx=fx, kappa=0)
    f.x = np.array([50., 90., 0])
    f.P *= 100
    f.R = np.eye(2)*(std_noise**2)
    f.Q = np.eye(3)*.001
    f.Q[0,0]=0
    f.Q[2,2]=0

    kf = KalmanFilter(dim_x=6, dim_z=2)
    kf.x = np.array([50., 0., 0, 0, .0, 0.])

    F = np.array([[1., 1., .5, 0., 0., 0.],
                  [0., 1., 1., 0., 0., 0.],
                  [0., 0., 1., 0., 0., 0.],
                  [0., 0., 0., 1., 1., .5],
                  [0., 0., 0., 0., 1., 1.],
                  [0., 0., 0., 0., 0., 1.]])

    kf.F = F
    kf.P*= 100
    kf.H = np.array([[1,0,0,0,0,0],
                     [0,0,0,1,0,0]])


    kf.R = f.R
    kf.Q[0:3, 0:3] = Q_discrete_white_noise(3, 1., .00001)
    kf.Q[3:6, 3:6] = Q_discrete_white_noise(3, 1., .00001)

    measurements = []
    results = []

    zs = []
    kfxs = []
    for t in range (0,12000):
        a = t / 30 + 90
        x = cos(radians(a)) * 50.+ randn() * std_noise
        y = sin(radians(a)) * 50. + randn() * std_noise
        # create measurement = t plus white noise
        z = np.array([x,y])
        zs.append(z)

        f.predict()
        f.update(z)

        kf.predict()
        kf.update(z)

        # save data
        results.append (hx(f.x))
        kfxs.append(kf.x)
        #print(f.x)

    results = np.asarray(results)
    zs = np.asarray(zs)
    kfxs = np.asarray(kfxs)

    print(results)
    if DO_PLOT:
        plt.plot(zs[:,0], zs[:,1], c='r', label='z')
        plt.plot(results[:,0], results[:,1], c='k', label='UKF')
        plt.plot(kfxs[:,0], kfxs[:,3], c='g', label='KF')
        plt.legend(loc='best')
        plt.axis('equal')
开发者ID:PepSalehi,项目名称:filterpy,代码行数:81,代码来源:test_ukf.py

示例2:

# 需要导入模块: from filterpy.kalman import KalmanFilter [as 别名]
# 或者: from filterpy.kalman.KalmanFilter import Q[0:3,0:3] [as 别名]
     [0, 0, 0, 0, 0, 1]])
cano.F = ca.F.copy()

ca.x = np.array([[2000., 0, 0, 10000, -15, 0]]).T
cano.x = ca.x.copy()

ca.P *= 1.e-12
cano.P *= 1.e-12
ca.R *= r**2
cano.R *= r**2
cano.Q *= 0
q = np.array([[.05, .125, .16666666666666666666666666667],
     [.125, .333333333333333333333333333333333333, .5],
     [.166666666666666666666666667, .5, 1]])*1.e-3

ca.Q[0:3, 0:3] = q
ca.Q[3:6, 3:6] = q

ca.H = np.array([[1, 0, 0, 0, 0, 0],
                 [0, 0, 0, 1, 0, 0]])
cano.H = ca.H.copy()

filters = [ca, cano]

trans = np.array([[0.8, 0.2],
                  [0.05, 0.95]])

trans = np.array([[0.97, 0.03],
                  [0.03, 0.97]])

开发者ID:bmswgnp,项目名称:filterpy,代码行数:31,代码来源:test_imm.py

示例3: test_imm

# 需要导入模块: from filterpy.kalman import KalmanFilter [as 别名]
# 或者: from filterpy.kalman.KalmanFilter import Q[0:3,0:3] [as 别名]
def test_imm():
    """ this test is drawn from Crassidis [1], example 4.6.

    ** References**

    [1] Crassidis. "Optimal Estimation of Dynamic Systems", CRC Press,
    Second edition.
    """

    r = 1.
    dt = 1.
    phi_sim = np.array(
        [[1, dt, 0, 0],
         [0, 1, 0, 0],
         [0, 0, 1, dt],
         [0, 0, 0, 1]])

    gam = np.array([[dt**2/2, 0],
                    [dt, 0],
                    [0, dt**2/2],
                    [0, dt]])

    x = np.array([[2000, 0, 10000, -15.]]).T

    simxs = []
    N = 600
    for i in range(N):
        x = np.dot(phi_sim, x)
        if i >= 400:
            x += np.dot(gam, np.array([[.075, .075]]).T)
        simxs.append(x)
    simxs = np.array(simxs)
    #x = np.genfromtxt('c:/users/rlabbe/dropbox/Crassidis/mycode/x.csv', delimiter=',')

    zs = np.zeros((N, 2))
    for i in range(len(zs)):
        zs[i, 0] = simxs[i, 0] + randn()*r
        zs[i, 1] = simxs[i, 2] + randn()*r

    try:
        #data to test against crassidis' IMM matlab code
        zs_tmp = np.genfromtxt('c:/users/rlabbe/dropbox/Crassidis/mycode/xx.csv', delimiter=',')[:-1]
        zs = zs_tmp
    except:
        pass
    ca = KalmanFilter(6, 2)
    cano = KalmanFilter(6, 2)
    ca.F = np.array(
        [[1, dt, dt**2/2, 0, 0, 0],
         [0, 1, dt, 0, 0, 0],
         [0, 0, 1, 0, 0, 0],
         [0, 0, 0, 1, dt, dt**2/2],
         [0, 0, 0, 0, 1, dt],
         [0, 0, 0, 0, 0, 1]])
    cano.F = ca.F.copy()

    ca.x = np.array([[2000., 0, 0, 10000, -15, 0]]).T
    cano.x = ca.x.copy()

    ca.P *= 1.e-12
    cano.P *= 1.e-12
    ca.R *= r**2
    cano.R *= r**2
    cano.Q *= 0
    q = np.array([[.05, .125, .16666666666666666666666666667],
         [.125, .333333333333333333333333333333333333, .5],
         [.166666666666666666666666667, .5, 1]])*1.e-3

    ca.Q[0:3, 0:3] = q
    ca.Q[3:6, 3:6] = q

    ca.H = np.array([[1, 0, 0, 0, 0, 0],
                     [0, 0, 0, 1, 0, 0]])
    cano.H = ca.H.copy()

    filters = [ca, cano]

    trans = np.array([[0.8, 0.2],
                      [0.05, 0.95]])

    trans = np.array([[0.97, 0.03],
                      [0.03, 0.97]])

    bank = IMMEstimator(filters, (0.5, 0.5), trans)

    xs, probs = [], []
    cvxs, caxs = [], []
    for i, z in enumerate(zs):
        z = np.array([z]).T
        bank.update(z)
        #print(ca.likelihood, cano.likelihood)
        #print(ca.x.T)
        xs.append(bank.x.copy())
        cvxs.append(ca.x.copy())
        caxs.append(cano.x.copy())
        #print(i, ca.likelihood, cano.likelihood, bank.w)

        #print('p', bank.p)
        probs.append(bank.mu.copy())

#.........这里部分代码省略.........
开发者ID:weiweikong,项目名称:filterpy,代码行数:103,代码来源:test_imm.py

示例4: test_imm

# 需要导入模块: from filterpy.kalman import KalmanFilter [as 别名]
# 或者: from filterpy.kalman.KalmanFilter import Q[0:3,0:3] [as 别名]
def test_imm():
    """ this test is drawn from Crassidis [1], example 4.6.

    ** References**

    [1] Crassidis. "Optimal Estimation of Dynamic Systems", CRC Press,
    Second edition.
    """

    r = 1.
    dt = 1.
    phi_sim = np.array(
        [[1, dt, 0, 0],
         [0, 1, 0, 0],
         [0, 0, 1, dt],
         [0, 0, 0, 1]])

    gam = np.array([[dt**2/2, 0],
                    [dt, 0],
                    [0, dt**2/2],
                    [0, dt]])

    x = np.array([[2000, 0, 10000, -15.]]).T

    simxs = []
    N = 600
    for i in range(N):
        x = np.dot(phi_sim, x)
        if i >= 400:
            x += np.dot(gam, np.array([[.075, .075]]).T)
        simxs.append(x)
    simxs = np.array(simxs)
    #x = np.genfromtxt('c:/users/rlabbe/dropbox/Crassidis/mycode/x.csv', delimiter=',')

    zs = np.zeros((N, 2))
    for i in range(len(zs)):
        zs[i, 0] = simxs[i, 0] + randn()*r
        zs[i, 1] = simxs[i, 2] + randn()*r

    try:
        #data to test against crassidis' IMM matlab code
        zs_tmp = np.genfromtxt('c:/users/rlabbe/dropbox/Crassidis/mycode/xx.csv', delimiter=',')[:-1]
        zs = zs_tmp
    except:
        pass
    ca = KalmanFilter(6, 2)
    cano = KalmanFilter(6, 2)
    dt2 = (dt**2)/2
    ca.F = np.array(
        [[1, dt, dt2, 0, 0,  0],
         [0, 1,  dt,  0, 0,  0],
         [0, 0,   1,  0, 0,  0],
         [0, 0,   0,  1, dt, dt2],
         [0, 0,   0,  0,  1, dt],
         [0, 0,   0,  0,  0,  1]])
    cano.F = ca.F.copy()

    ca.x = np.array([[2000., 0, 0, 10000, -15, 0]]).T
    cano.x = ca.x.copy()

    ca.P *= 1.e-12
    cano.P *= 1.e-12
    ca.R *= r**2
    cano.R *= r**2
    cano.Q *= 0
    q = np.array([[.05, .125, 1/6],
         [.125, 1/3, .5],
         [1/6, .5, 1]])*1.e-3

    ca.Q[0:3, 0:3] = q
    ca.Q[3:6, 3:6] = q

    ca.H = np.array([[1, 0, 0, 0, 0, 0],
                     [0, 0, 0, 1, 0, 0]])
    cano.H = ca.H.copy()

    filters = [ca, cano]

    trans = np.array([[0.97, 0.03],
                      [0.03, 0.97]])

    bank = IMMEstimator(filters, (0.5, 0.5), trans)

    xs, probs = [], []
    cvxs, caxs = [], []
    for i, z in enumerate(zs[0:10]):
        z = np.array([z]).T
        bank.update(z)
        #print(ca.likelihood, cano.likelihood)
        #print(ca.x.T)
        xs.append(bank.x.copy())
        cvxs.append(ca.x.copy())
        caxs.append(cano.x.copy())
        #print(i, ca.likelihood, cano.likelihood, bank.w)

        #print('p', bank.p)
        probs.append(bank.mu.copy())
开发者ID:Censio,项目名称:filterpy,代码行数:99,代码来源:test_imm.py

示例5: test_imm

# 需要导入模块: from filterpy.kalman import KalmanFilter [as 别名]
# 或者: from filterpy.kalman.KalmanFilter import Q[0:3,0:3] [as 别名]
def test_imm():
    """ This test is drawn from Crassidis [1], example 4.6.

    ** References**

    [1] Crassidis. "Optimal Estimation of Dynamic Systems", CRC Press,
    Second edition.
    """

    r = 100.
    dt = 1.
    phi_sim = np.array(
        [[1, dt, 0, 0],
         [0, 1, 0, 0],
         [0, 0, 1, dt],
         [0, 0, 0, 1]])

    gam = np.array([[dt**2/2, 0],
                    [dt, 0],
                    [0, dt**2/2],
                    [0, dt]])

    x = np.array([[2000, 0, 10000, -15.]]).T

    simxs = []
    N = 600
    for i in range(N):
        x = np.dot(phi_sim, x)
        if i >= 400:
            x += np.dot(gam, np.array([[.075, .075]]).T)
        simxs.append(x)
    simxs = np.array(simxs)

    zs = np.zeros((N, 2))
    for i in range(len(zs)):
        zs[i, 0] = simxs[i, 0] + randn()*r
        zs[i, 1] = simxs[i, 2] + randn()*r

    '''
    try:
        # data to test against crassidis' IMM matlab code
        zs_tmp = np.genfromtxt('c:/users/rlabbe/dropbox/Crassidis/mycode/xx.csv', delimiter=',')[:-1]
        zs = zs_tmp
    except:
        pass
    '''
    ca = KalmanFilter(6, 2)
    cano = KalmanFilter(6, 2)
    dt2 = (dt**2)/2
    ca.F = np.array(
        [[1, dt, dt2, 0, 0,  0],
         [0, 1,  dt,  0, 0,  0],
         [0, 0,   1,  0, 0,  0],
         [0, 0,   0,  1, dt, dt2],
         [0, 0,   0,  0,  1, dt],
         [0, 0,   0,  0,  0,  1]])
    cano.F = ca.F.copy()

    ca.x = np.array([[2000., 0, 0, 10000, -15, 0]]).T
    cano.x = ca.x.copy()

    ca.P *= 1.e-12
    cano.P *= 1.e-12
    ca.R *= r**2
    cano.R *= r**2
    cano.Q *= 0
    q = np.array([[.05, .125, 1./6],
                  [.125, 1/3, .5],
                  [1./6, .5, 1.]])*1.e-3

    ca.Q[0:3, 0:3] = q
    ca.Q[3:6, 3:6] = q

    ca.H = np.array([[1, 0, 0, 0, 0, 0],
                     [0, 0, 0, 1, 0, 0]])
    cano.H = ca.H.copy()

    filters = [ca, cano]

    trans = np.array([[0.97, 0.03],
                      [0.03, 0.97]])

    bank = IMMEstimator(filters, (0.5, 0.5), trans)

    # ensure __repr__ doesn't have problems
    str(bank)

    s = Saver(bank)
    ca_s = Saver(ca)
    cano_s = Saver(cano)
    for i, z in enumerate(zs):
        z = np.array([z]).T
        bank.update(z)
        bank.predict()

        s.save()
        ca_s.save()
        cano_s.save()

    if DO_PLOT:
#.........这里部分代码省略.........
开发者ID:poeticcapybara,项目名称:filterpy,代码行数:103,代码来源:test_imm.py


注:本文中的filterpy.kalman.KalmanFilter.Q[0:3,0:3]方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。