本文整理汇总了Python中evaluator.Evaluator.results["timings"]方法的典型用法代码示例。如果您正苦于以下问题:Python Evaluator.results["timings"]方法的具体用法?Python Evaluator.results["timings"]怎么用?Python Evaluator.results["timings"]使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类evaluator.Evaluator
的用法示例。
在下文中一共展示了Evaluator.results["timings"]方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: window_overlap_test
# 需要导入模块: from evaluator import Evaluator [as 别名]
# 或者: from evaluator.Evaluator import results["timings"] [as 别名]
def window_overlap_test(window_overlap=2.):
""" """
train_labels, train_images, test_labels, test_images = get_training_and_test_data()
# split to make experimentation quicker
train_labels, train_images = get_subset_of_training_data(train_labels, train_images, split=0.5)
training_size = len(train_labels)
desc = "testing influence of window_overlap, set to {}. NB training size = {}".format(
window_overlap,
training_size
)
print desc
selected_labels = list(set(train_labels))
params = build_params(num_classes=len(selected_labels),
training_size=len(train_images),
test_size=len(test_images),
window_overlap=window_overlap,
fn_prefix="winoverlap-{}".format(window_overlap))
trainer = SketchRecognitionTrainer(
file_path=SketchRecognitionTrainer.get_cookbook_filename_for_params(params=params),
run_parallel_processors=True,
params=params
)
classifier = trainer.train_and_build_classifier(train_labels, train_images)
encoded_test_labels = classifier.le.transform(test_labels)
test_images_codelabels = trainer.code_labels_for_image_descriptors(
trainer.extract_image_descriptors(test_images)
)
evaluator = Evaluator(
clf=classifier.clf,
label_encoder=classifier.le,
params=params,
output_filepath=SketchRecognitionTrainer.get_evaluation_filename_for_params(params=params)
)
# add timings to output
evaluator.results["timings"] = {}
for key, value in trainer.timings.iteritems():
evaluator.results["timings"][key] = value
# add comment
evaluator.results["desc"] = desc
evaluation_results = evaluator.evaluate(X=test_images_codelabels, y=encoded_test_labels)
print evaluation_results
开发者ID:joshnewnham,项目名称:udacity_machine_learning_engineer_nanodegree_capstone,代码行数:57,代码来源:feature_engineering_tuning.py
示例2: training_size_test
# 需要导入模块: from evaluator import Evaluator [as 别名]
# 或者: from evaluator.Evaluator import results["timings"] [as 别名]
def training_size_test(split=0.5):
"""
see what effect the training size has on the performance, initially take off 50%
"""
print "test_2"
train_labels, train_images, test_labels, test_images = get_training_and_test_data()
train_labels, train_images = get_subset_of_training_data(train_labels, train_images, split=split)
selected_labels = list(set(train_labels))
params = build_params(num_classes=len(selected_labels),
training_size=len(train_images),
test_size=len(test_images))
trainer = SketchRecognitionTrainer(
file_path=SketchRecognitionTrainer.get_cookbook_filename_for_params(params=params),
run_parallel_processors=True,
params=params
)
classifier = trainer.train_and_build_classifier(train_labels, train_images)
encoded_test_labels = classifier.le.transform(test_labels)
test_images_codelabels = trainer.code_labels_for_image_descriptors(
trainer.extract_image_descriptors(test_images)
)
evaluator = Evaluator(
clf=classifier.clf,
label_encoder=classifier.le,
params=params,
output_filepath=SketchRecognitionTrainer.get_evaluation_filename_for_params(params=params)
)
# add timings to output
evaluator.results["timings"] = {}
for key, value in trainer.timings.iteritems():
evaluator.results["timings"][key] = value
# add comment
evaluator.results["desc"] = "After many iterations, this is a baseline for which tuning will benchmark from"
evaluation_results = evaluator.evaluate(X=test_images_codelabels, y=encoded_test_labels)
print evaluation_results
开发者ID:joshnewnham,项目名称:udacity_machine_learning_engineer_nanodegree_capstone,代码行数:48,代码来源:feature_engineering_tuning.py
示例3: sanity_check
# 需要导入模块: from evaluator import Evaluator [as 别名]
# 或者: from evaluator.Evaluator import results["timings"] [as 别名]
def sanity_check():
""" baseline test, all all parameters from experimentation """
train_labels, train_images, test_labels, test_images = get_training_and_test_data()
train_labels, train_images = get_subset_of_training_data(train_labels, train_images, split=0.05)
selected_labels = list(set(train_labels))
params = build_params(
num_classes=len(selected_labels),
training_size=len(train_images),
test_size=len(test_images),
fn_prefix="sanitycheck"
)
trainer = SketchRecognitionTrainer(
file_path=SketchRecognitionTrainer.get_cookbook_filename_for_params(params=params),
run_parallel_processors=True,
params=params
)
classifier = trainer.train_and_build_classifier(train_labels, train_images)
encoded_test_labels = classifier.le.transform(test_labels)
test_images_codelabels = trainer.code_labels_for_image_descriptors(
trainer.extract_image_descriptors(test_images)
)
evaluator = Evaluator(
clf=classifier.clf,
label_encoder=classifier.le,
params=params,
output_filepath=SketchRecognitionTrainer.get_evaluation_filename_for_params(params=params)
)
# add timings to output
evaluator.results["timings"] = {}
for key, value in trainer.timings.iteritems():
evaluator.results["timings"][key] = value
# add comment
evaluator.results["desc"] = "After many iterations, this is a baseline for which tuning will benchmark from"
evaluation_results = evaluator.evaluate(X=test_images_codelabels, y=encoded_test_labels)
print evaluation_results
开发者ID:joshnewnham,项目名称:udacity_machine_learning_engineer_nanodegree_capstone,代码行数:48,代码来源:feature_engineering_tuning.py
示例4: cluster_size_test
# 需要导入模块: from evaluator import Evaluator [as 别名]
# 或者: from evaluator.Evaluator import results["timings"] [as 别名]
def cluster_size_test(num_clusters=200):
""" """
train_labels, train_images, test_labels, test_images = get_training_and_test_data()
selected_labels = list(set(train_labels))
params = build_params(num_classes=len(selected_labels),
training_size=len(train_images),
test_size=len(test_images),
num_clusters=num_clusters)
trainer = SketchRecognitionTrainer(
file_path=SketchRecognitionTrainer.get_cookbook_filename_for_params(params=params),
run_parallel_processors=True,
params=params
)
classifier = trainer.train_and_build_classifier(train_labels, train_images)
encoded_test_labels = classifier.le.transform(test_labels)
test_images_codelabels = trainer.code_labels_for_image_descriptors(
trainer.extract_image_descriptors(test_images)
)
evaluator = Evaluator(
clf=classifier.clf,
label_encoder=classifier.le,
params=params,
output_filepath=SketchRecognitionTrainer.get_evaluation_filename_for_params(params=params)
)
# add timings to output
evaluator.results["timings"] = {}
for key, value in trainer.timings.iteritems():
evaluator.results["timings"][key] = value
# add comment
evaluator.results["desc"] = "testing influence of num_clusters, set to {}".format(num_clusters)
evaluation_results = evaluator.evaluate(X=test_images_codelabels, y=encoded_test_labels)
print evaluation_results
开发者ID:joshnewnham,项目名称:udacity_machine_learning_engineer_nanodegree_capstone,代码行数:44,代码来源:feature_engineering_tuning.py
示例5: clustering_algorithm_test
# 需要导入模块: from evaluator import Evaluator [as 别名]
# 或者: from evaluator.Evaluator import results["timings"] [as 别名]
def clustering_algorithm_test(clustering='kmeans'):
""" """
from sklearn.cluster import KMeans
from sklearn.cluster import MiniBatchKMeans
import multiprocessing
train_labels, train_images, test_labels, test_images = get_training_and_test_data()
# split to make experimentation quicker
train_labels, train_images = get_subset_of_training_data(train_labels, train_images, split=0.5)
training_size = len(train_labels)
desc = "testing influence of different clustering algorithms, using {} for a training size of {}".format(
clustering,
training_size
)
print desc
selected_labels = list(set(train_labels))
params = build_params(num_classes=len(selected_labels),
training_size=len(train_images),
test_size=len(test_images),
fn_prefix="clustering-{}".format(clustering))
trainer = SketchRecognitionTrainer(
file_path=SketchRecognitionTrainer.get_cookbook_filename_for_params(params=params),
run_parallel_processors=True,
params=params
)
if clustering == "kmeans":
trainer.clustering = KMeans(
init='k-means++',
n_clusters=params[ParamKeys.NUM_CLUSTERS],
n_init=10,
max_iter=10,
tol=1.0,
n_jobs=multiprocessing.cpu_count() if trainer.run_parallel_processors else 1
)
elif clustering == "minibatchkmeans":
trainer.clustering = MiniBatchKMeans(
init='k-means++',
n_clusters=params[ParamKeys.NUM_CLUSTERS],
batch_size=100,
n_init=10,
max_no_improvement=10,
verbose=0
)
elif clustering == "meanshift":
trainer = MeanShiftSketchRecognitionTrainer(
file_path=SketchRecognitionTrainer.get_cookbook_filename_for_params(params=params),
run_parallel_processors=True,
params=params
)
classifier = trainer.train_and_build_classifier(train_labels, train_images)
encoded_test_labels = classifier.le.transform(test_labels)
test_images_codelabels = trainer.code_labels_for_image_descriptors(
trainer.extract_image_descriptors(test_images)
)
evaluator = Evaluator(
clf=classifier.clf,
label_encoder=classifier.le,
params=params,
output_filepath=SketchRecognitionTrainer.get_evaluation_filename_for_params(params=params)
)
# add timings to output
evaluator.results["timings"] = {}
for key, value in trainer.timings.iteritems():
evaluator.results["timings"][key] = value
# add comment
evaluator.results["desc"] = desc
evaluation_results = evaluator.evaluate(X=test_images_codelabels, y=encoded_test_labels)
print evaluation_results
开发者ID:joshnewnham,项目名称:udacity_machine_learning_engineer_nanodegree_capstone,代码行数:86,代码来源:feature_engineering_tuning.py