本文整理汇总了Python中evaluator.Evaluator类的典型用法代码示例。如果您正苦于以下问题:Python Evaluator类的具体用法?Python Evaluator怎么用?Python Evaluator使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Evaluator类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: evaluate_classifier
def evaluate_classifier(clf_wrapper,
params,
train_images_codelabels, train_labels,
test_images_codelabels, test_labels):
print "==\nevaluate_classifier (test size: {})\n{}".format(len(test_labels), clf_wrapper)
print "training classifier {}".format(clf_wrapper.clf)
start_time = time.time()
clf_wrapper.fit(X=train_images_codelabels, labels=train_labels)
et = (time.time() - start_time) * 1000.0
print "finished training classifier - took {}ms".format(et)
# evaluate
print "proceeding to evaluate classifier on test set {}".format(len(test_labels))
encoded_test_labels = clf_wrapper.label_encoder.transform(test_labels)
evaluator = Evaluator(
clf=clf_wrapper.clf,
label_encoder=clf_wrapper.label_encoder,
params=params,
output_filepath="../results/evaluation_results_{}.json".format(clf_wrapper)
)
evaluator.results["classifier"] = "{}".format(clf_wrapper.clf)
evaluator.results["classifier_training_time"] = "{}".format(et)
evaluation_results = evaluator.evaluate(X=test_images_codelabels, y=encoded_test_labels)
print evaluation_results
开发者ID:joshnewnham,项目名称:udacity_machine_learning_engineer_nanodegree_capstone,代码行数:29,代码来源:model_tuning.py
示例2: detect
def detect(self, img_path=None, output_file_prefix='', num_ft=100, offset=0, scaling_factor = 1.2, scaling_iters=3, nms=0.5, clf=None, templates=None, linear_scaling=False):
#=====[ Load our classifier and templates ]=====
clf = pickle.load(open(clf)) if clf else pickle.load(open('classifiers/top_ft_classifier_100_200', 'r'))
templates = pickle.load(open(templates)) if templates else pickle.load(open('processed_data/top_templates_1000.p','r'))
#=====[ Get top templates ]=====
templates = templates[:num_ft]
#=====[ Instantiate our feature generator ]=====
fg = FeatureGenerator(templates)
#=====[ Instantiate our detector ]=====
if linear_scaling:
self.detector = LinearScaleDetector(clf.clf, fg,scaling_factor=scaling_factor,scaling_iters=scaling_iters, nms=nms)
else:
self.detector = Detector(clf.clf, fg,scaling_factor=scaling_factor,scaling_iters=scaling_iters, nms=nms)
#=====[ If a specific image path is given, then we do not evaluate, just detect the pedestrian and draw bounding boxes ]=====
if img_path:
_, bbs = self.detector.detect_pedestrians(img_path)
self._draw_bbs(img_path, bbs)
else:
#=====[ Instantiate our evaluator and evaluate ]=====
evaluator = Evaluator('INRIAPerson/Test', self.detector)
FPPI, miss_rate = evaluator.evaluate(output_file_prefix,offset)
print '\nFPPI: {}\nMiss rate: {}\n'.format(FPPI, miss_rate)
示例3: NERValidator
class NERValidator(object):
def __init__(self, recbysns, classifiers):
self.recbysns = recbysns
self.db = self.recbysns.db
self.classifiers = classifiers
self.evaluator = Evaluator()
self.confusion_matrixes = {str(classifier):
[] for classifier in self.classifiers}
def validate(self):
entities = [NEREntity(self.recbysns, entity)
for entity in self.db.select_table('recbysns_entity', '1')]
for classifier in self.classifiers:
self.test(classifier, entities)
self.evaluator.evaluate(self.confusion_matrixes)
def test(self, classifier, entities):
confusion_matrix = {
NER_BOOK: {NER_BOOK: float(0), NER_MOVIE: float(0),
NER_VIDEO: float(0), NER_OTHERS: float(0)},
NER_MOVIE: {NER_BOOK: float(0), NER_MOVIE: float(0),
NER_VIDEO: float(0), NER_OTHERS: float(0)},
NER_VIDEO: {NER_BOOK: float(0), NER_MOVIE: float(0),
NER_VIDEO: float(0), NER_OTHERS: float(0)},
NER_OTHERS: {NER_BOOK: float(0), NER_MOVIE: float(0),
NER_VIDEO: float(0), NER_OTHERS: float(0)},
}
for entity in entities:
# predicted ner class
p_ner_class = classifier.predict(entity)
ner_class = entity.ner_class()
confusion_matrix[ner_class][p_ner_class] += 1
print confusion_matrix
self.confusion_matrixes[str(classifier)].append(confusion_matrix)
示例4: __main__
def __main__(argv):
#%%
logger = logging.getLogger(__name__)
logger.info("VECTOR MODEL INFORMATION RETRIEVAL SYSTEM START")
gli = InvertedIndexGenerator(GLI_CONFIG_FILE)
gli.run()
gli.write_output()
index = Indexer(INDEX_CONFIG_FILE, TfidfVectorizer)
index.run()
index.write_output()
pc = QueryProcessor(PC_CONFIG_FILE)
pc.run()
pc.write_output()
buscador = SearchEngine(BUSCA_CONFIG_FILE, TfidfVectorizer)
buscador.run()
buscador.write_output()
#%%
avaliador = Evaluator(AVAL_CONFIG_FILE)
avaliador.run()
avaliador.write_output()
logger.info("VECTOR MODEL INFORMATION RETRIEVAL SYSTEM DONE")
示例5: p_interpreter_other
def p_interpreter_other(self, p):
'''interpreter : comparision
| select
| array_selection
| func_call_stmt
| expression'''
print Evaluator.visit(p[1])
示例6: SAValidator
class SAValidator(object):
def __init__(self, recbysns, classifiers):
self.recbysns = recbysns
self.db = self.recbysns.db
self.classifiers = classifiers
self.evaluator = Evaluator()
self.confusion_matrixes = {str(classifier): []
for classifier in self.classifiers}
def validate(self):
entities = [SAEntity(self.recbysns, entity)
for entity in self.db.select_table('recbysns_entity',
"type in (%d,%d,%d)" % (NER_BOOK, NER_MOVIE, NER_VIDEO))]
for classifier in self.classifiers:
self.test(classifier, entities)
self.evaluator.evaluate(self.confusion_matrixes)
def test(self, classifier, entities):
confusion_matrix = {
SA_POSITIVE: {SA_POSITIVE: float(0), SA_NETURAL: float(0),
SA_NEGATIVE: float(0)},
SA_NETURAL: {SA_POSITIVE: float(0), SA_NETURAL: float(0),
SA_NEGATIVE: float(0)},
SA_NEGATIVE: {SA_POSITIVE: float(0), SA_NETURAL: float(0),
SA_NEGATIVE: float(0)},
}
for entity in entities:
# predicted sa_class
p_sa_class = classifier.predict(entity)
# actual sa_class
sa_class = entity.sa_class()
confusion_matrix[sa_class][p_sa_class] += 1
print confusion_matrix
self.confusion_matrixes[str(classifier)].append(confusion_matrix)
示例7: run
def run(self):
while 1:
try:
s = raw_input('calc> ')
except EOFError:
break
if not s: continue
Evaluator.visit(yacc.parse(s))
示例8: window_overlap_test
def window_overlap_test(window_overlap=2.):
""" """
train_labels, train_images, test_labels, test_images = get_training_and_test_data()
# split to make experimentation quicker
train_labels, train_images = get_subset_of_training_data(train_labels, train_images, split=0.5)
training_size = len(train_labels)
desc = "testing influence of window_overlap, set to {}. NB training size = {}".format(
window_overlap,
training_size
)
print desc
selected_labels = list(set(train_labels))
params = build_params(num_classes=len(selected_labels),
training_size=len(train_images),
test_size=len(test_images),
window_overlap=window_overlap,
fn_prefix="winoverlap-{}".format(window_overlap))
trainer = SketchRecognitionTrainer(
file_path=SketchRecognitionTrainer.get_cookbook_filename_for_params(params=params),
run_parallel_processors=True,
params=params
)
classifier = trainer.train_and_build_classifier(train_labels, train_images)
encoded_test_labels = classifier.le.transform(test_labels)
test_images_codelabels = trainer.code_labels_for_image_descriptors(
trainer.extract_image_descriptors(test_images)
)
evaluator = Evaluator(
clf=classifier.clf,
label_encoder=classifier.le,
params=params,
output_filepath=SketchRecognitionTrainer.get_evaluation_filename_for_params(params=params)
)
# add timings to output
evaluator.results["timings"] = {}
for key, value in trainer.timings.iteritems():
evaluator.results["timings"][key] = value
# add comment
evaluator.results["desc"] = desc
evaluation_results = evaluator.evaluate(X=test_images_codelabels, y=encoded_test_labels)
print evaluation_results
开发者ID:joshnewnham,项目名称:udacity_machine_learning_engineer_nanodegree_capstone,代码行数:55,代码来源:feature_engineering_tuning.py
示例9: Test
class Test(unittest.TestCase):
def setUp(self):
gold_directory = os.path.join(DATA_DIRECTORY, 'segment_data_test')
result_directory = os.path.join(DATA_DIRECTORY, 'data_test_result')
self.evaluator = Evaluator(gold_directory, result_directory)
def test_calculate_precision(self):
self.evaluator.calculate_precision()
示例10: main
def main():
if len(sys.argv) != 6:
assert False, "INSUFFICIENT ARGUMENTS!"
filenames = [line.strip() for line in open(sys.argv[4])]
ann_filepaths = [sys.argv[5] + '/' + filename[:len(filename)-4]+".ann" for filename in filenames]
# print(ann_filepaths)
data_param = {"dataset_name": sys.argv[1], "ann_filepaths": ann_filepaths,"n_label": int(sys.argv[2]), "gt_img_dir": sys.argv[3], "test_img_list_filepath": sys.argv[4], "result_dir": sys.argv[5], "mapping_label": color_class_map, "dir_output": sys.argv[5]}
eval = Evaluator(data_param)
eval.evaluate_all()
示例11: main
def main():
mode = argv[1]
e = Evaluator()
if mode == 'wikt':
e.read_all_wiktionary()
e.compare_with_triangles_stdin()
elif mode == 'feat':
e.write_labels(argv[2])
e.featurize_and_uniq_triangles_stdin()
示例12: _process
def _process(self):
self.msg = self._receive(True)
if self.msg:
request = json.loads(self.msg.content)
if request['request_type'] == 'games':
self.games = request['data']
self.show_dialog()
if request['request_type'] == 'game_evaluation':
PrintFormatter.results(request['data'])
Evaluator.make_bet(self.mood, request['data'])
print "\n********Results********\n"
Evaluator.find_result(request['data'])
self.show_dialog()
示例13: main
def main():
"""Requests infix expressions, translates them to postfix,
and evaluates them, until the user enters nothing."""
while True:
sourceStr = input("Enter an infix expression: ")
if sourceStr == "": break
try:
scanner = Scanner(sourceStr)
translator = Translator(scanner)
postfix = translator.translate()
evaluator = Evaluator(postfix)
print("Value:", evaluator.evaluate())
except Exception as e:
print("Error:", e, translator.translationStatus())
示例14: test_end_to_end
def test_end_to_end(self):
with open("unit_tests/fixtures/tests_games.json") as file:
data = json.loads(file.read())
# Update player's source placeholder with actual code
with open("unit_tests/fixtures/Snakes/Snakes.cpp") as source:
data["source"] = source.read()
# Update opponent's source placeholder with actual code
with open("unit_tests/fixtures/Snakes/Opponent.cpp") as source:
data["matches"][0]["source"] = source.read()
evaluator = Evaluator(data)
evaluator.evaluate()
示例15: solve
def solve(self, instance, startpoint=None):
if startpoint is None:
startpoint = Random().solve(instance)
e = Evaluator(instance)
current = (startpoint, e.evaluate(startpoint))
while True:
next_step = self.select_step(e, current)
if not next_step:
break
else:
current = next_step
return current[0]