当前位置: 首页>>代码示例>>Python>>正文


Python FastRBTree.prev_item方法代码示例

本文整理汇总了Python中bintrees.FastRBTree.prev_item方法的典型用法代码示例。如果您正苦于以下问题:Python FastRBTree.prev_item方法的具体用法?Python FastRBTree.prev_item怎么用?Python FastRBTree.prev_item使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在bintrees.FastRBTree的用法示例。


在下文中一共展示了FastRBTree.prev_item方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: TDigest

# 需要导入模块: from bintrees import FastRBTree [as 别名]
# 或者: from bintrees.FastRBTree import prev_item [as 别名]

#.........这里部分代码省略.........

    def batch_update(self, values, w=1):
        """
        Update the t-digest with an iterable of values. This assumes all points have the 
        same weight.
        """
        for x in values:
            self.update(x, w)
        self.compress()
        return

    def compress(self):
        T = TDigest(self.delta, self.K)
        C = list(self.C.values())
        shuffle(C)
        for c_i in C:
            T.update(c_i.mean, c_i.count)
        self.C = T.C

    def percentile(self, q):
        """ 
        Computes the percentile of a specific value in [0,1], ie. computes F^{-1}(q) where F^{-1} denotes
        the inverse CDF of the distribution. 

        """
        if not (0 <= q <= 1):
            raise ValueError("q must be between 0 and 1, inclusive.")

        t = 0
        q *= self.n

        for i, key in enumerate(self.C.keys()):
            c_i = self.C[key]
            k = c_i.count
            if q < t + k:
                if i == 0:
                    return c_i.mean
                elif i == len(self) - 1:
                    return c_i.mean
                else:
                    delta = (self.C.succ_item(key)[1].mean - self.C.prev_item(key)[1].mean) / 2.
                return c_i.mean + ((q - t) / k - 0.5) * delta

            t += k
        return self.C.max_item()[1].mean

    def quantile(self, q):
        """ 
        Computes the quantile of a specific value, ie. computes F(q) where F denotes
        the CDF of the distribution. 

        """
        t = 0
        N = float(self.n)

        for i, key in enumerate(self.C.keys()):
            c_i = self.C[key]
            if i == len(self) - 1:
                delta = (c_i.mean - self.C.prev_item(key)[1].mean) / 2.
            else:
                delta = (self.C.succ_item(key)[1].mean - c_i.mean) / 2.
            z = max(-1, (q - c_i.mean) / delta)

            if z < 1:
                return t / N + c_i.count / N * (z + 1) / 2

            t += c_i.count
        return 1

    def trimmed_mean(self, q1, q2):
        """
        Computes the mean of the distribution between the two percentiles q1 and q2.
        This is a modified algorithm than the one presented in the original t-Digest paper. 

        """
        if not (q1 < q2):
            raise ValueError("q must be between 0 and 1, inclusive.")

        s = k = t = 0
        q1 *= self.n
        q2 *= self.n
        for i, key in enumerate(self.C.keys()):
            c_i = self.C[key]
            k_i = c_i.count
            if q1 < t + k_i:
                if i == 0:
                    delta = self.C.succ_item(key)[1].mean - c_i.mean
                elif i == len(self) - 1:
                    delta = c_i.mean - self.C.prev_item(key)[1].mean
                else:
                    delta = (self.C.succ_item(key)[1].mean - self.C.prev_item(key)[1].mean) / 2.
                nu = ((q1 - t) / k_i - 0.5) * delta
                s += nu * k_i * c_i.mean
                k += nu * k_i

            if q2 < t + k_i:
                return s/k
            t += k_i

        return s/k
开发者ID:anantasty,项目名称:tdigest,代码行数:104,代码来源:tdigest.py


注:本文中的bintrees.FastRBTree.prev_item方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。